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Abstract. We present a comprehensive set of tactics that make it prac-
tical to use separation logic in a proof assistant to verify partial cor-
rectness properties of complex pointer-intensive programs. Our goal is
to make separation logic as easy to use as the standard logic of a proof
assistant. We have developed tactics for the simplification, rearranging,
splitting, matching and rewriting of separation logic assertions as well
as the discharging of a program verification condition using a separation
logic description of the machine state. We have implemented our tactics
in the Coq proof assistant, applying them to a deep embedding of Cmi-
nor, a C-like intermediate language used by Leroy’s verified CompCert
compiler. We have used our tactics to verify the safety and complete-
ness of a Cheney copying garbage collector written in Cminor. Our ideas
should be applicable to other substructural logics and imperative lan-
guages.

1 Introduction

Separation logic [1] is an extension of Hoare logic for reasoning about shared
mutable data structures. Separation logic reasons about the contents of individ-
ual cells of memory in a manner similar to linear logic [2], avoiding problems
with reasoning about aliasing in a very natural fashion. For this reason, it has
been successfully applied to the verification of a number of pointer-intensive
applications such as garbage collectors [3, 4].

However, most work on separation logic has involved paper, rather than
machine-checkable, proofs. Mechanizing a proof can increase our confidence in
the proof and potentially automate away some of the tedium in its construction.
We would like to use separation logic in a proof assistant to verify deep properties
of programs that may be hard to check fully automatically. This is difficult
because the standard tactics of proof assistants such as Coq [5] do not cannot
effectively deal with the linearity properties of separation logic.

In this paper, we address this problem with a suite of tools for separation-
logic-based program verification of complex pointer-intensive programs. These
tools are intended for the interactive verification of Cminor programs [6] in the
Coq proof assistant, but should be readily adaptable to similar settings. We
have chosen Cminor because it can be compiled using the CompCert verified
compiler [6], allowing for the possibility of properties of source programs to be
carried down to executable code. We have tested the applicability of these tools



by using them to verifying the safety of a Cheney garbage collector [7], as well
as a number of smaller examples.

The main contributions of this paper are a comprehensive set of tactics for
reasoning about separation logic assertions (including simplification, rearrang-
ing, splitting, matching and rewriting) and a program logic and accompanying
set of tactics for program verification using separation logic that strongly sepa-
rate reasoning about memory from other more conventional reasoning. Together
these tactics essentially transform Coq into a proof assistant for separation logic.
The tactics are implemented in a combination of direct and reflective styles. The
Coq implementation is available online from

http://cs.pdx.edu/~mccreigh/ptsl/

Our tool suite has two major components. First, we have tactics for reason-
ing about separation logic assertions. These are focused on easing the difficulty
of working with a linear-style logic within a more conventional proof assistant.
These tools enable the simplification and manipulation of separation logic hy-
potheses and goals, as well as the discharging of goals that on paper would be
trivial. These tactics are fairly modular and should be readily adaptable to other
settings, from separation logic with other memory models to embeddings of lin-
ear logic in conventional proof assistants. Some of these tactics should be useful
for reasoning about any kind of associative and commutative operator.

The second component of our tool set is a program logic and related tactics.
The program logic relates the dynamic semantics of the program to its specifica-
tion. The tactics step through a procedure one statement at a time, enabling the
“programmer’s intuition” to guide the “logician’s intuition”. At each program
step, there is a separation logic-based description of the current program state.
A verified verification condition generator produces a precondition given the
postcondition of the statement. The tactics simplify the task of showing that
the current state is safe to execute by automatically solving many such steps
and updating the description of the state once the current statement has been
verified. Loop and branch join point annotations must be manually specified.

The work most closely related to ours is unpublished work by Appel on tactics
for separation logic [8], which also defines a set of tactics for manual proofs of
separation logic in proof assistants, but has less support for general reasoning
about separation logic assertions and has somewhat more manual proofs. Other
work by Berdine et al. [9] and Calcagno et al. [10] is focused on the verification
of lightweight properties of large code bases, rather than heavier properties for
smaller code bases. We developed an earlier generation of tactics for verifying
programs using separation logic [11] in Coq for a less realistic machine and used
them to verify a series of garbage collectors [4].

Organization of the Paper. First we will give an overview of separation logic
assertions, then discuss our tactics for proving lemmas involving separation logic
assertions. After that we will discuss our program logic, and the various tactics
we have created to verify programs. Then we will briefly discuss how we used our



v ::= Vundef | Vword(w) | Vptr(a)

e ::= v | x | [e] | e + e | ...

s ::= skip | x := e | [e1] := e2 | loop s | s1; s2 | ...

σ ::= (m, v)

Fig. 1. Cminor syntax

separation logic tactics to verify a garbage collector, then discuss related work
in more detail and conclude.

2 Example

In this section we give an example of our separation logic tactics.
[[Extended example of a proof]]

3 Cminor

Our program tools verify programs written in Cminor, a C-like imperative lan-
guage. The main difference between C and Cminor is that local variables are not
allocated on the stack, so it is not possible to take the address of a local variable.
Cminor is an intermediate language of the CompCert [6] compiler. CompCert is
a semantics preserving compiler from C to PowerPC assembly, giving us a path
to verified machine code if we can prove properties about the programs being
compiled.

We use a simplified variant of Cminor that only supports 32-bit values and
does not support floating point numbers. Fig. ?? gives the syntax. We write w
for 32-bit integers and a for addresses, which are always 32-bit aligned. A value
v is either undefined, a 32-bit word value or a pointer. An expression e is either
a value, a program variable, a memory load, or any of a nymber of standard
arithmetic or logical operations such as addition. A statement is either a skip
s that does nothing, a variable assignment, a store to memory, an infinite loop,
or a sequence of statements. In addition, there are statements for blocks, exits
to blocks, procedure calls, procedure returns, and branches. Our tactics support
these additional statements plus procedure definitions, but we omit discussion
of them here for space reasons.

A memory m of type Mem is a partial mapping from addresses to values, while
a variable environment v is a partial mapping from Cminor variables x to values.
A state σ is a memory plus a variable environment. In our implementation, a
state also includes a stack pointer.

We have defined a standard small-step semantics for Cminor, which is stan-
dard [16] and omitted here for reasons of space. They are formally defined in



(v 7→v′) m ::= (m = {v ; v′})
emp m ::= (m = ∅)
true m ::= True
(!P ) m ::= P ∧ emp m
(∃x : T. A) m ::= (∃x : T. A m)
(A ∗B) m ::= ∃m1, m2. (m = m1 ]m2) ∧A m1 ∧ B m2

Fig. 2. Definition of separation logic assertions

the Coq framework. Expression evaluation eval(σ, e) evaluates expression e in
the context of state σ and either returns Some(v) if execution succeeds or None
if it fails. The only way execution of an expression can fail is if it accesses an
undefined variable or an invalid memory location. All other degenerate cases
(such as adding an integer to Vundef) simply return Some(Vundef).

4 Separation Logic Assertions

Imperative programs often have complex data structures. To reason about these
data structures, separation logic assertions [1] describe memory by treating mem-
ory cells as a linear resource. In this section, we will describe separation logic
assertions and associated tactics for Cminor, but they should be applicable to
other imperative languages.

Fig. 1 gives the standard definitions of the separation logic assertions we use
in this paper. We write P for propositions and T for types in the underlying logic,
the Calculus of Inductive Constructions [12] (CIC). Propositions have type Prop.
We write A and B for separation logic assertions, which are implemented using
a shallow embedding [13]. Each separation logic assertion is a memory predicate
with type Mem → Prop, so we write A m for the proposition that memory m
can be described by separation logic predicate A.

The separation logic assertion contains, written v 7→v′, holds on a memory m
if v is an address that is the only element of the domain of m and m(v) = v′. We
write such a memory m as {v ; v′}. The next assertion is empty, written emp,
which only holds on empty memory. The trivial assertion true holds on every
memory. The modal operator !P from linear logic (also adapted to separation
logic by Appel [8]) holds on a memory m if the proposition P holds and m is
empty. This is useful when defining more complex assertions and aids automated
analysis by syntactically distinguishing pure propositions that do not involve
memory. The existential ∃x : T. A is similar to the standard existential operator,
where x is bound in A, and holds on a memory m if there exists some term M
having type T , such that A with M substituted for x holds on m. We omit the
type T when it is clear from context, and follow common practice and write
a 7→− for ∃x. a 7→x.

The final and most crucial separation logic operator we will be using in this
paper is separating conjunction, written A ∗ B. m = m1 ] m2 holds if m is
equal to m1 ∪ m2 and the domains of m1 and m2 are disjoint. This holds on



a memory m if m can be split into two non-overlapping memories m1 and m2

such that A holds on m1 and B holds on m2. This operator is right associative
and commutative, and we write (A ∗ B ∗ C) for (A ∗ (B ∗ C)). This operator is
used to specify the frame rule, which is written as follows in conventional Hoare
logic:

{A}s{A′}
{A ∗B}s{A′ ∗B}

B describes the part of memory that s does not interact with. The frame rule
is most commonly applied at procedure call sites. We have found that we have
never needed to manually instantiate the frame rule, thanks to a combination of
our tactics and program logic.

We can use these basic operators in conjunction with Coq’s standard facilities
for inductive and recursive definitions to build assertions for more complex data
structures. For instance, we can inductively define an assertion array(a, l) that
holds on a memory when that memory consists entirely of an array starting at
address a containing values given by the list l:

array(a, nil) ::= emp
array(a, v :: l) ::= a 7→v ∗ array(a + 4, l)

4.1 Tactics

Defining the basic separation logic predicates and verifying the basic properties
is not difficult to do using conventional techniques, even in a mechanized setting.
What can be difficult is actually constructing proofs in a proof assistant such
as Coq. As we have said, the primary difficulty is that we are attempting to
carry out linear-style reasoning in a proof assistant with a native logic that is
not linear.

If A, B, C and D are regular propositions, then the proposition that (A ∧
B ∧C ∧D) implies (B ∧ (A∧D)∧C) can be easily proved in a proof assistant.
A single tactic invocation will break down the assumption and goal into their
respective components and match up hypotheses to goals.

If A, B, C and D are separation logic assertions, proving the equivalent goal,
that for all m, (A ∗B ∗C ∗D) m implies (B ∗ (A ∗D) ∗C) m, is more difficult.
Unfolding the definition of * from Fig. 1 and breaking down the assumption in a
similar way will involve large numbers of side conditions about memory equality
and disjointedness. While Marti et al. [14] have used this approach, it throws
away the abstract reasoning of separation logic.

Instead, we follow the approach of Reynolds [1] and others and reason about
separation logic assertions using basic laws like associativity and commutativ-
ity. However this is not the end of our troubles. Proving the above implication
will require around four applications of associativity and commutativity lemmas.
This can be done manually, but becomes increasingly tedious as assertions grow
larger. In real proofs, these assertions can contain more than a dozen compo-
nents.



H : (B ∗A) m

(A ∗ array(x, nil) ∗B′) m

H : (B ∗A) m

(A ∗ emp ∗B′) m

H : (B ∗A) m

(A ∗B′) m

H ′ : B m′

B′ m′

(initial) (rewrite) (simplify) (match)

Fig. 3. Example of tactic usage

To mitigate these and other problems we have constructed a variety of custom
separation logic tactics. Our goal is to make constructing proofs about separation
logic predicates no more difficult than reasoning about Coq’s standard logic by
making the application of basic laws about separation logic assertions as simple
as possible.

Fig. 3 contains an example of the usage of our tactics. Initially, we have a
hypothesis H that is a proof that (B ∗ A) m, and we are trying to prove that
(A∗array(x, nil)∗B′) m. First the rewriting tactic uses a previously proven lemma
about empty arrays to clean away the array assertion. Next the simplification
tactic removes the emp. Finally, a matching tactic cancels out the common parts
of the hypothesis and goal. This leaves us with a smaller proof obligation.

We have five types of tactics for separation logic assertions: simplification,
splitting, matching, rewriting and rearranging. We will discuss general imple-
mentation issues, then discuss each type of tactic in turn.

Implementation Efficiency matters for these tools. If they are slow or produce
gigantic proofs they will not be useful. All of our tactics are implemented entirely
in Coq’s tactic language Ltac. To improve efficiency and reliability, some tactics
are implemented reflectively [15].

The core of a reflective tactic is implemented in the proof language (in our
case, CIC) as a transformation on a deep embedding of, say, separation logic.
Only a thin wrapper layer is implemented in the tactic language. Reflective
tactics provide a number of software engineering benefits, stemming from the
fact that they allow the bulk of a tactic to be implemented in a strongly typed
functional language instead of in the tactic language, which at least for Coq is
untyped and imperative. Additionally, the tactic can be mechanically reasoned
about, as it is implemented in the proof language, enabling verification of cor-
rectness and completeness. Reflective tactics can also be smaller than proofs
implemented using rewriting, as the proof does not get larger as more transfor-
mations are carried out.

Simplification. The simplification tactic ssimpl puts a separation logic assertion
into a normal form to make manipulation simpler. The primary purpose of this
tactic is to clean up assertions after definitions have been unfolded or other
tactics have been applied. ssimpl in H simplifies the hypothesis H and ssimpl
simplifies the goal. We give an example of simplification in Fig. 4. The P on the



(A ∗ ∃x.x 7→v ∗ emp ∗ true ∗ (B ∗ true)∗ !P ) m (A ∗ x 7→v ∗B ∗ true) m P

(before) (after)

Fig. 4. Example simplification

right of the “after” part of the figure is a separate hypothesis if a hypothesis is
being simplified or a separate subgoal if the goal is being simplified.

The basic simplifications are as follows:

1. All separation logic existentials are removed. In the hypothesis, they are
introduced as new variables, while in the goal new meta-level existential
variables are created that must eventually be instantiated.

2. In a similar fashion to existentials, all “pure” predicates !P are removed from
the assertion, and either turned into new goals or hypotheses, depending on
what is being eliminated. The tactic attempts to solve any new goals.

3. Any instances of true are combined and moved to the right hand side of the
assertion. This can be done because true is equivalent to true ∗ true. true
is moved to the right because it is likely to be the least interesting part of
any assertion.

4. For all A, (A∗emp) and (emp∗A) are replaced with A. emp is the identity
element of ∗, and so can be eliminated in this way.

5. For all A, B and C, ((A ∗ B) ∗ C) is replaced with (A ∗ (B ∗ C)). Having
assertions in a canonical form like this makes manipulation by other tools
easier.

In addition, there are a few common cases where the simplifier can make
more radical simplifications:

1. If Vundef 7→ v or 0 7→ v are present anywhere in the assertion (for any value
v), the entire assertion is equivalent to False. From the definition of 7→, the
first value must always be an address, and Vundef and 0 are not addresses,
so we have a contradiction. Other non-address values could be added, but
these are two that arise frequently. If we are simplifying a hypothesis, the
tactic can then immediately solve the current goal, no matter what it is.

2. If an entire goal assertion can be simplified to true the simplifier tactic
immediately solves the goal.

3. The tactic attempts to solve a newly simplified goal by assumption.

Rearranging. Our rearranging tactic srearr allows the separating conjunction’s
commutativity and associativity properties to be applied in a concise and declar-
ative fashion. This is useful because the order and association of the components
of a separation logic assertion affect the behavior of the splitting and rewriting
tactics, which are described in Sects. 2.1 and ??.



(A ∗B ∗ C ∗D ∗ E ∗ F ∗G) m (G ∗ F ∗ ((E ∗D) ∗ C) ∗A ∗B) m

(before) (after)

srearr [7, 6, [[5, 4], 3], 1, 2]

Fig. 5. Example of declarative rearranging

H : (A ∗B ∗ C) m

(E ∗ F ∗G) m

H1 : A m1

E m1

H2 : B m2

F m2

H3 : C m3

G m3

(before) (after)

Fig. 6. Example of splitting

The rearranging tactic is invoked by srearr T , where T is a tree describing the
final shape of the assertion. There is an equivalent tactic for hypotheses, srearr T
in H, which performs the rearranging on hypothesis H. Fig. 8 shows an example
of the use of this tactic.1 The shape of the tree gives the desired association
of the assertion while the nodes give the desired order. Describing the desired
term in this abstract way (as opposed to asserting the desired final term in its
entirety and using searchMatch) makes the tactic argument less brittle in the
face of minor changes. There are other simpler tactics that can be used when a
less radical restructuring is needed.

For the association, notice that the placement of parenthesis in the final
state matches the placement of the parenthesis in the tactic argument. For the
ordering, the number at a given position is the initial position of that term. In
the example, 7 is the first leaf in argument to the tactic, so the first part of
the final assertion is G, the seventh part of the initial assertion. As with other
tactics, srearr assumes that ssimpl has been used already, and thus is of the form
(A1 ∗ A2 ∗ ... ∗ An) m. The tactic will fail if the ordering given is not a valid
permutation.

Splitting. The tactic ssplit subdivides a separation logic proof by creating a
new subgoal for each corresponding part of the hypothesis and goal. Fig. 5
gives an example of ssplit. Initially there is a single goal and a single hypothesis
describing memory. Afterwards, there are three goals, each with a hypothesis.
Memories m1, m2 and m3 are freshly created, and represent disjoint subsets
covering the original memory m. If all three implications hold, then the initial
implication also holds.
1 The actual syntax of the command is slightly different, to avoid colliding with exist-

ing syntactic definitions: srearr .[7, 6, .[ .[5, 4], 3], 1, 2]%SL. Coq’s abil-
ity to define new syntax along with its implicit coercions provides a fairly lightweight
notation.



H : (a 7→v) m

(a 7→v′) m v = v′

(before) (after)

H : (a 7→v) m

(a 7→−) m
(solved)

(before) (after)

H : (a 7→v) m

(b 7→v) m a = b

(before) (after)

Fig. 7. Special cases for contains

E : v1 = v′
1

H : (D ∗A ∗ a 7→v1 ∗B ∗ b 7→v2 ∗ true) m

(B′ ∗ b 7→− ∗D ∗ a 7→v′
1 ∗A ∗ true) m

E : v1 = v′
1

H : (B ∗ true) m′

(B′ ∗ true) m′

(before) (after)

Fig. 8. Matching example

Splitting must be done with care as it can lead to a proof state where no
further progress is possible. In Fig. 5, if A does not imply E, then the “after”
state cannot be proven, even if the “before” state could (if, say, A implied F , B
implied E, and C implied G).

The splitting tactic also has a number of special cases to solve subgoals
involving 7→, shown in Fig. 6. For the first case, if a memory location a is known
to contain a value v and the goal is to show that a contains v′, then we can
simplify this to showing that v = v′. For the second case, recall that a 7→ −
is defined to be ∃x. a 7→ x. Instantiating the existential with v is enough to
solve the goal. For the third case, this implication will be true if and only if
the addresses a and b are equal. The tactic also applies some heuristics to try
to solve the address equality. For instance, a + 0 can be simplified to a, and
a + b = a + c can be simplified to b = c. The splitting tactic also handles
any combination of these three special cases. For instance, if neither the address
nor the value match between hypothesis and goal, then two equality subgoals are
created. These special cases are not remarkable, but the automatic simplification
provided by the splitting tactic eliminates many tedious proof steps.

Matching. The matching tactic searchMatch cancels out commonalities be-
tween the hypothesis and goal. It also implements the first two special cases for
7→ given in Fig. 6. As with the other tools, it assumes that ssimpl has already
been run on the goal and hypothesis.

Fig. 7 gives an example of the effect of the matching tactic. In the initial
state, we have both a description of memory and a proof that the value v1 is
equal to the value v′

1. After the tactic runs, assertions such as A and D that
are present in both the top and bottom are removed. In addition, the two 7→
assertions are also automatically cancelled out. The assertion for address a can
be cancelled out due to the equality v1 = v′

1, while the assertion for address b
can be cancelled by instantiation of the existential in b 7→−.



Notice that the predicate true, present in both the hypothesis and goal, is
not cancelled. If B implies (B′ ∗ true) then cancelling out true from goal and
hypothesis will cause a provable goal to become unprovable. true behaves like
an elastic garbage bag into which we can stuff as little or as much of the memory
as we wish, but we cannot tell what we will need to place in it until the rest of
the assertion has been accounted for. This is the same problem presented by the
additive unit > in linear logic, which can consume any set of linear resources.
We do not have this problem for matching other separation logic predicates as
they generally do not have this sort of slack.

Rewriting. Most of our tactics allow the standard connectives and formulae
of separation logic such as ∗, 7→ and emp to be easily manipulated, but real
programs will also require assertions about higher-level data structures such as
arrays (see Sect. 2), linked lists, and even more complex application-specific data
structures such as garbage collector heaps. We want to support the lightweight
manipulation of new assertions in a manner that is easily extended by the user.
We solve this problem by implementing a form of rewriting for separation logic
assertions. The setoid rewriting tactics of Coq allow user-defined relations to
be used with the standard rewriting tactics. For separation logic assertions,
there are two relations of interest: assertion implication (written A ⇒ B) and
equivalence (written A ⇔ B). These are defined in terms of implication and
logical equivalence: A ⇒ B is defined as ∀m. A m → B m, while A ⇔ B is
defined as ∀m. A m ↔ B m.

In Fig. 3 we gave an example of the use of the rewriting tactic. In the first
proof state, the goal that contains an empty array that must be eliminated.
Assume we have proved a theorem arrayEmpty having type ∀x. array(x, nil) ⇒
emp. The tactic srewrite arrayEmpty will change the proof state to the state
shown in the second part of the figure. Manual instantiation of the quantifier x
is not required because srewrite is a thin wrapper2 around Coq’s standard rewrite
tactic, which uses unification to instantiate quantifiers in the types of terms.

Once basic rewriting is set up for separation logic assertions, we can take
advantage Coq’s autorewrite tactic that will repeatedly apply a user-defined
database of rewriting rules. A user can define a database of simplification rules
for their application-specific data structure assertions, then use autorewrite fol-
lowed by ssimpl to create a new simplification tactic that is capable of handling
the new assertions.

5 Program Logic

Our Cminor program logic, CMPL, is a verified verification condition generator
(VCG). We will discuss our VC then describe how verification conditions (VCs)
are verified.
2 The setoid rewriting facility requires a syntactic hint as to which equivalence to

use, so srewrite changes a goal of the form A m to mpOk A m before applying the
standard rewriting tactic, where mpOk A m is defined to be A m.



stmPre skip q σ ::= q σ

stmPre (s; s′) q σ ::=
stmPre s (stmPre s′ q) σ

stmPre (x:= e) q σ ::=
do v ← eval(σ, e);
do σ′ ← setVar(σ, x, v);

q σ′

stmPre ([e1]:= e2) q σ ::=
do v1 ← eval(σ, e1);
do v2 ← eval(σ, e2);
do σ′ ← storeVal σ v1 v2;

q σ′

stmPre (loop s) q σ ::= ∃I. I σ ∧ (∀σ′. I σ′ → stmPre s I σ′)

(do x← Some(v); P ) ::= P [v/x] (do x← None; P ) ::= False

Fig. 9. Verification condition generator

5.1 Verification Condition Generator

The VCG, stmPre, is a weakest precondition generator, defined as a recursive
function in Coq’s logic, and takes as arguments the statement to be verified
along with specifications for the various ways to exit the statement, and returns
a state predicate that is the precondition for the statement. Verifying the VC
then requires showing that a user-specified precondition is as least as strong as
the VC-generated precondition.

The design of the VCG is based on Appel and Blazy’s program logic for
Cminor[16]. Their logic is structured as a traditional Hoare “triple” (though
there are more than three components) whereas our logic is more like a weakest
precondition generator. Their logic builds in separation logic instead of being
defined in terms of the operational semantics of the machine, and has more side
conditions for various rules (for instance, their logic only allows pure expressions
in store statements).

For the subset of Cminor we have defined in Sect. ??, the VCG only needs
one specification argument, a state predicate q that is the postcondition of the
current statement. The full version of the VCG that we have implemented takes
other arguments giving the specifications of function calls, the precondition of
blocks that can be exited to, and the post condition of the current procedure.

The VC does not contain any separation logic assertions. Instead, it is defined
in terms of the operational semantics of the Cminor abstract machine. The pro-
gram logic tactics relate separation logic assertions to the operational semantics,
allowing iterative refinement of the program logic tactics without changing the
program logic itself.

The definition of some of the cases of the VCG is given in Fig. 9. Only ar-
guments that required for these cases are included to simplify the presentation,
leaving three arguments to stmPre: the statement we are generating a precon-
dition for, the precondition of the following statement q, and the current state
σ. Note that the preconditions are state predicates (involving memory and a
variable environment) while the separation logic assertions defined in previous
sections are memory predicates.



A skip statement always succeeds and passes to the next statement, so the
precondition is just q. The precondition of a sequence of statements is simply
the composition of VCs for the two statements: we generate a precondition for
s′, then use that as the postcondition of s.

For more complex statements, we have to handle the possibility of execution
failing. To do this in a readable way, we use a Haskell-style do-notation to encode
a sort of error monad. The operations that can fail, such as expression evaluation,
return Some(R) if they succeed and produce some result R, and None if they
fail. If the operation succeeds, the returned value is substituted for the variable
in the body of the do, P , which must be a proposition. If the operation fails, the
do-notation reduces to the predicate False.

The cases for variable assignment and storing to memory follow the dynamic
semantics of the machine. Variable assignment attempts to evaluate the right
hand side of the statement e, then attempts to update the value of the variable
x in the initial state. The latter will fail if x is not declared in the current
function. If it does succeed, then the postcondition q must hold on the resulting
state σ′. Store works in the same way: evaluation of the two expressions, then
a store, are attempted. For the store to succeed, v1 must be a valid address in
memory. As with assignment, the postcondition q must hold on the resulting
state. With both of these statements, if any of the intermediate evaluations fail
then the entire VC will end up being False, and thus the VC will be impossible
to prove.

Finally, the case for loops is standard. A state predicate I must be selected as
a loop invariant. The loop invariant must hold on the initial state, and the loop
invariant must imply the precondition of the loop body s, when the postcondition
is I.

We have mechanically verified the soundness of the verification condition
generator as part of the safety of the program logic: if the program is well-formed,
then we can either take another step or we have reached a valid termination state
for the program.

5.2 Tactics

The VC generator described in the previous section produces large VCs that do
not mention separation logic assertions. To manage the size and allow separa-
tion logic based reasoning, we have created a tactic vcSteps that examines and
updates a description of the program state for the statement that is currently
being verified. The two components of this description are a separation logic
assertion describing the current memory and a predicate vfEqv describing the
current variable environment. vfEqv S φ v holds if the set S is a subset of the do-
main of the variable environment v of the current procedure and for all Cminor
variables x in the domain of the partial function φ we have that φ(x) = v(x).

Fig. 9 shows the rough sequence of steps that vcSteps carries out when the
start of the current statement is a load of a variable. The complex sequence is
needed because the right hand side of the statement might be an expression of
arbitrary complexity. The two hypothesis V and H above the line describe the



V : vfEqv {x, y} {(x ; a)} (π2 σ)
H : (A ∗ a 7→v ∗B) (π1 σ)

stmPre (y:=[x]; s) P σ
stmPre (y:=[x]) (stmPre s P ) σ
do v′ ← eval(σ, [x]); do σ′ ← setVar(σ, y, v′); stmPre s P σ′

do v′ ← eval(σ, [a]); do σ′ ← setVar(σ, y, v′); stmPre s P σ′

do v′ ← Some(v); do σ′ ← setVar(σ, y, v′); stmPre s P σ′

do σ′ ← setVar(σ, y, v); stmPre s P σ′

Fig. 10. Program logic tactics: examining the state

V ′ : vfEqv {x, y} {(x ; a), (y ; v)} (π2 σ′)
H : (A ∗ a 7→v ∗B) (π1 σ′)

stmPre s P σ′

Fig. 11. Program logic tactics: updating the state

variable environment and memory of the initial state σ, and are the precondition
of this statement. The first stmPre below the line is the initial VC that must be
verified. The tactic unfolds the definition of the VC for a sequence, then for an
assignment. Next the tactic determines that the value of the variable x is a by
examining the hypothesis V . After that is done, the load operation is entirely in
terms of values, so the tactic will examine the hypothesis H to determine that
address a contains value v. The relevant binding a 7→v can occur as any subtree
of the separation logic assertion. Now the do-notation can be reduced away.

Now it remains to show that the variable update is safe, and to reflect the
result of the update in V , the description of the current variable environment.
y is an element of the set that is the second argument of V , so it is safe to write
to the variable y. The tactics then define a new state σ′ that is the result of
updating y to v in σ, then create a description V ′ of the variable environment of
the new state. This results in the new proof state shown in Fig. 11. The memory
in σ′ is the same as σ, so H is unchanged. If the operation had instead been a
store to memory, H would have been updated instead of V . The tactics can now
begin the same unfolding process for s.

This may seem like a lengthy series of steps, but it is invisible to the user.
The tactics will get “stuck” at various points that require user intervention. For
instance, at a loop an invariant must be supplied. They can also get stuck if the
program is accessing memory at an address a but the description of memory
does not contain an assertion of the form a 7→ v. In this case, the tactics in the
previous section can be applied to manipulate the assertion until it does, then
vcSteps can be invoked again to pick up where it left off.



6 Implementation

Our tactics are implemented entirely in the Coq tactic language Ltac. The tool
suite include about 5200 lines of libraries, such as theorems about modular arith-
metic and data structures such as finite sets. Our definition of Cminor (discussed
in Sect. ??) is about 4700 lines. The definition of separation logic assertions and
associated lemmas (discussed in Sect. 2) are about 1100 lines, while the tactics
are about 3000 lines. Finally, the program logic (discussed in Sect. ??), which
includes its definition, proofs, and associated tactics, is about 2000 lines.

7 Application

We have used the tactics described in this paper to verify the safety and com-
pleteness of a Cheney copying garbage collector [7] implemented in Cminor. It is
safe because the final object heap is isomorphic to the reachable objects in the
initial state and complete because it only copies reachable objects. This collector
supports features such as scanning roots stored in stack frames, objects with an
arbitrary number of fields, and precise collection via information stored in object
headers. The verification took around 4700 lines of proof scripts (including the
definition of the collector and all specifications), compared to 7800 lines for our
previous work [4] which used more primitive tactics. The reduction in line count
is despite the fact that our earlier collector did not support any of the features
we listed earlier in this paragraph and did not use modular arithmetic.

There has been other work on mechanized garbage collector verification, such
as Myreen et al. [24] who verify a Cheney collector in 2000 lines using a decompi-
lation based approach, and Hawblitzel et al. [?] who use an automated theorem
prover to automatically verify a collector that is realistic enough to be used for
real C# benchmarks.

8 Related Work

Appel’s unpublished note [8] describes tactics implemented in the Coq proof
assistant for manual verification in a proof assistant using separation logic. These
tactics do not support as many manipulations of separation logic assertions, but
they do support matching and extraction of existentials and pure assertions !P .
There is also an application tactic that is similar to our rewriting tactic, but
it appears to require manual instantiation of quantifiers. The paper describes a
tactic for inversion of inductively defined separation logic predicates, which we
do not support.

The tactics also step procedures one statement at a time. While Appel also
applies a “two-level approach” that attempts to pull things out of separation
logic assertions to leverage existing tactic infrastructure, our approach is more
aggressive about this, lifting out expression evaluation. This allows our approach
to avoid reasoning about whether expressions in assertions are pure or not.



We can give a rough comparison of proof sizes, using the standard in-place list
reversal benchmark. Ignoring comments and the definition of the program, by the
count of wc Appel uses 200 lines and 795 words to verify this program [8]. With
our tactics, ignoring comments, blank lines and the definition of the program,
our verification takes 68 lines and less than 400 words.

Appel and Blazy [16] discuss a similar separation logic for Cminor which is
structured in terms of conventional Hoare logic “triples” instead of as a precon-
dition generator, and requires more restrictions about the purity of expressions.
Power and Webster [17] describe a deep embedding of linear logic in Coq along
with a couple of very primitive tactics. Affeldt and Marti [14] use separation
logic in a proof assistant, but unfold the definitions of the separation logic as-
sertions to allow the use of more conventional tactics. Tuch et al. [18] define
a mechanized program logic for reasoning about C-like memory models. They
are able to verify programs using separation logic, but do not have specialized
tactics for separation logic connectives.

Other work has focused on automated verification of lightweight separation
logic specifications. Smallfoot [9] is an automated tool for verifying lightweight
separation logic specifications of programs. This approach has been used as the
basis for certified separation logic decisions procedures in Coq [19] and HOL [20].
Calcagno et al. [10] use separation logic for an efficient compositional shape
analysis that is able to infer some specifications.

Still other work has focused on mechanized reasoning about imperative pointer
programs outside of the context of separation logic [13, 21, 22] using either deep or
shallow embeddings. Expressing assertions via more conventional propositions
enables the use of powerful preexisting tactics. Another approach to program
verification decompiles imperative programs into functional programs that are
more amenable to analysis in a proof assistant [23, 24].

9 Future Work and Conclusion

The tactics we have described in this paper provide a solid foundation for the use
of separation logic in a proof assistant but further automation could further re-
duce the size of proof scripts. Integrating a Smallfoot-like decision procedure into
our tactics would automate reasoning about standard data structures. Improved
reasoning about modular arithmetic would also be useful.

Our tactics could also be adopted to other similar logics, such as linear logic.
This will require proving new commutative and associative lemmas for these
logics, but the top level tactics are fairly independent of these low level details.
Most of the work would be remove special cases that only apply to separation
logic, such as matching rules for the contains predicate 7→.

We have presented a set of separation logic tactics that allows the verification
of programs using separation logic in a proof assistant. These tactics allow Coq
to be used as a proof assistant for separation logic by allowing the assertions
to be easily manipulated via simplification, rearranging, splitting, matching and
rewriting. They also provide tactics for proving a verification condition by means



of a separation logic based description of the program state. These tactics are
powreful enough to verify a garbage collector.
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