
The Habit Programming Language:
The Revised Preliminary Report

The High Assurance Systems Programming Project (Hasp)
Department of Computer Science, Portland State University

Portland, Oregon 97207, USA

November 2010

Contents

1 Introduction 3

1.1 Document History . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6

3 A Survey of the Habit Programming Language 8

3.1 Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Lexical Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Kinds, Types, and Predicates . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Kinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.2 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3.3 Type Signatures . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.4 Predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.5 Type Functions . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4.1 Applicative Expressions . . . . . . . . . . . . . . . . . . . 22

3.4.2 Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.3 Local Declarations . . . . . . . . . . . . . . . . . . . . . . 24

1



3.4.4 Conditionals (if and case) . . . . . . . . . . . . . . . . . 24

3.5 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.1 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.2 Fixity Declarations . . . . . . . . . . . . . . . . . . . . . . 30

3.6.3 Type Signature Declarations . . . . . . . . . . . . . . . . . 30

3.6.4 Class Declarations . . . . . . . . . . . . . . . . . . . . . . 31

3.6.5 Instance Declarations . . . . . . . . . . . . . . . . . . . . . 33

3.6.6 Type Synonym Declarations . . . . . . . . . . . . . . . . . 36

3.6.7 Datatype Declarations . . . . . . . . . . . . . . . . . . . . 38

3.6.8 Bitdata Type Declarations . . . . . . . . . . . . . . . . . . 39

3.6.9 Structure Declarations . . . . . . . . . . . . . . . . . . . . 44

3.6.10 Area Declarations . . . . . . . . . . . . . . . . . . . . . . . 48

4 Standard Environment 50

4.1 Basic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Type Level Numbers . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Dot Notation: the Select and Update Classes . . . . . . . . . . . 55

4.4 Standard Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Numeric Literals . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.7 Index Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.8 Bit Vector Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.9 Bit-Level Representation Classes . . . . . . . . . . . . . . . . . . 63

4.10 Boolean and Shift Classes . . . . . . . . . . . . . . . . . . . . . . 64

4.11 Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.12 Pointed Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.13 Monads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.14 Memory Areas, References and Alignments . . . . . . . . . . . . 69

4.15 Memory Area Initialization . . . . . . . . . . . . . . . . . . . . . 74

4.15.1 Initialization of Stored Data . . . . . . . . . . . . . . . . . 75

2



4.15.2 Null Initialization . . . . . . . . . . . . . . . . . . . . . . . 76

4.15.3 No Initialization . . . . . . . . . . . . . . . . . . . . . . . 76

4.15.4 Default Initialization . . . . . . . . . . . . . . . . . . . . . 77

5 Extended Example: Memory-based Arrays 78

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Inserting a Priority . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Removing a Priority . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Finding the Highest Priority . . . . . . . . . . . . . . . . . . . . . 86

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

1 Introduction

This report presents a preliminary design for the programming language Habit,
a dialect of Haskell [14] that supports the development of high quality systems
software. The primary commitments of the design are as follows:

• Systems programming: Unlike Haskell, which was intended to serve as a
general purpose functional programming language, the design of Habit
focusses on features that are needed in systems software development.
These priorities are reflected fairly directly in the new features that Habit
provides for describing bit-level and memory-based data representations,
the introduction of new syntactic extensions to facilitate monadic pro-
gramming, and, most significantly, the adoption of a call-by-value se-
mantics to improve predictability of execution. The emphasis on systems
programming also impacts the design in less direct ways, including as-
sumptions about the expected use of whole program compilation and
optimization strategies in a practical Habit implementation.

• High assurance: Although most details of Haskell’s semantics have been
formalized at some point in the research literature, there is no consoli-
dated formal description of the whole language. There are also known
differences in semantics, particularly with respect to operational behav-
ior, between different Haskell implementations in areas where the Haskell
report provides no guidance. Although it is not addressed in the current
report, a high-priority for Habit is to provide a full, formal semantics for
the complete language that can be used as a foundation for reasoning
and formal verification, a mechanism for ensuring consistency between
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implementations, and a basis for reliably predicting details about mem-
ory allocation, asymptotic behavior, and resource utilization.

• Simplicity: We strive for a language design that is as simple as possible.
The goals of providing a full and tractable semantics and of producing
a practical working implementation are key drivers for a simple design;
it would be very difficult to realize these goals for a complicated pro-
gramming language with many constructs, intricate semantics, and awk-
ward special cases. The emphasis on systems programming provides a
lower bound in terms of functionality that must be included, but also
provides opportunities for simplification because it allows us to focus
on features that are needed in this particular domain, and to omit those
that might only be useful in a more generally scoped language. For ex-
ample, the design of Habit omits aspects of Haskell such as list com-
prehensions, lazy patterns, and defaults because these features are not
typically required in systems programming. Perhaps more significantly,
Habit avoids the complexities of features like the monomorphism restric-
tion, a frequent source of confusion for new and seasoned Haskell pro-
grammers alike, because it is not relevant to the kinds of compilation
techniques that we expect to be used in Habit implementations.

Another fundamental theme that underlies the design is the need to balance
abstraction and control. Clearly, it is beneficial to use higher-level abstractions
and programming constructs whenever possible because this can help to boost
reuse and reliability as well as developer productivity. However, there are also
some situations in systems programming that require a fine degree of control
over low-level details such as performance, predictability, and data represen-
tation; in cases like these, systems developers accept the need for lower-level
coding techniques in return for greater transparency and a more direct map-
ping between source code and the resulting behavior on an underlying hard-
ware platform. The design of Habit is intended to encourage the use of high-
level abstractions whenever possible, while also supporting low-level control
whenever that is required.

The remaining sections of this report are as follows. In Section 2, we sketch
the background and motivations for the design of Habit. This material is not
required to understand the technical details in the rest of the report, but may
be useful in providing context. Section 3 begins the technical portion of the
report with a survey of the Habit language, much of which is presented in
the form of an annotated grammar. This provides us with at least a brief op-
portunity to discuss each of the syntactic constructs of Habit. In Section 4,
we discuss the standard environment for Habit, documenting the kinds, type
classes, type constructors, and primitive operations that are used as the build-
ing blocks for Habit programs. In the terminology of Haskell, this amounts
to a tour of the Habit standard prelude. Finally, in Section 5, we present an
extended programming example using Habit. Instead of showcasing Habit’s
support for conventional functional programming techniques (such as high-
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order functions, algebraic data types, polymorphism, type classes, and so on),
much of which would already look very familiar to a Haskell programmer, we
focus on a demonstration of the facilities that Habit provides for working with
memory-based data structures. More specifically, the example provides an im-
plementation for a priority set using memory-based arrays to support O(1)
identification of the maximum priority in the set, and logarithmic time opera-
tions for insertion and deletion. The example closely follows the structure of
a previous implementation that was written in C as part of the timer interrupt
handler for the pork implementation of L4; we include code for both the Habit
and C implementations for the purposes of comparison. Because the timer
interrupt is triggered many times a second, this is an example in which raw
performance of compiled Habit code would be important, and in which dy-
namic memory allocation (and, most importantly, garbage collection) should
be avoided in order to obtain predictable performance and low latency.

1.1 Document History

This is the second version of the Habit language report, replacing the version
dated August 2009, and incorporating a small number of changes and clarifi-
cations. In addition to many minor adjustments and tweaks, the most notable
changes in this version of the report are as follows:

• Clarification of the syntax for type expressions (Section 3.3.2).

• Clarification of the dot notation mechanisms that Habit uses to describe
selection of fields in bitdata and memory area structures (Sections 3.6.8,
3.6.9, and 4.3).

• New details about the syntax for constructing, updating, and matching
against bitdata values (Section 3.6.8).

• New mechanisms for specifying memory area initialization (Section 4.15).

• A change from anonymous struct [ ... ] types to named structure types
introduced by top-level struct declarations (Section 3.6.9); this change
enables the definition of recursive structure types and allows the specifi-
cation of default initializers.

• A small change to allow the keyword type as a synonym for * in kind
expressions (Section 3.3.1).

We still consider this version of the report to be preliminary, and we expect
that aspects of the design may still evolve, possibly in significant ways, as our
implementation matures, and as we gain more experience using Habit to con-
struct and reason about new systems programming artifacts.
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2 Background

This section summarizes the background and previous work that has prompted
the development of Habit. This information may help to provide some deeper
insights into the motivations and goals for the language design; readers who
are interested only in technical aspects of Habit may, however, prefer to skip
directly to the next section. Much of the text in this section is derived from an
earlier publication [1] where some of these issues were discussed in more detail
and used to suggest the development of a new language with the placeholder
name of Systems Haskell. Habit, of course, is the result of that development.

Development of systems software—including device drivers, operating sys-
tems, microkernels, and hypervisors—is particularly challenging when high
levels of assurance about program behavior are required. On the one hand,
programmers must deal with intricate low-level and performance-critical de-
tails of hardware such as fixed-width registers, bit-level data formats, direct
memory access, I/O ports, data and instruction caches, and concurrency. On
the other hand, to ensure correct behavior, including critical safety and secu-
rity properties, the same code must also be related directly and precisely to
high-level, abstract models that can be subjected to rigorous analysis, possi-
bly including theorem proving and model checking. Failure of computer soft-
ware can be a major problem in any application domain. However, the conse-
quences of failure in systems software are especially severe: even simple errors
or oversights—whether in handling low-level hardware correctly or in meeting
the goals of high-level verification—can quickly compromise an entire system.

Despite the advances that have been made in programming language design,
most real-world systems software today is still built using fairly low-level lan-
guages and tools such as C and assembly language. Use of such tools enables
programmers to address important performance concerns but also makes it
much harder to reason formally about the code. As a result, it can be much
harder to obtain high confidence in the behavior of the resulting software. By
comparison, modern functional languages, such as Haskell [14] and ML [13],
support much higher levels of program abstraction than have traditionally
been possible in this domain and offer software engineering benefits in the
form of increased productivity and opportunities for code re-use. Such lan-
guages also provide strong guarantees about type and memory safety, auto-
matically detecting and eliminating common sources of bugs at compile-time,
and, because of their strong mathematical foundations, provide natural open-
ings for mechanized formal verification and validation of software at the high-
est levels of assurance. Is it possible that languages like these might be better
choices for building more reliable, secure, and trust-worthy systems software?

As part of our group’s efforts to explore this question, we developed House [5],
a prototype operating system that boots and runs on bare metal (IA32) and in
which the kernel, a small collection of device drivers, and several sample ap-
plications, have all been implemented in the pure, lazy functional language
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Haskell. The House kernel supports protected execution of arbitrary user-
level binaries and manages the virtual memory of each such process by direct
manipulation of the page table data structures that are used by the hardware
MMU. We have also developed two prototype implementations of the L4 mi-
crokernel [11], one in Haskell (called Hank) that builds on the H-interface foun-
dation that was used in House, and, for comparison, a second (called pork) that
was built using the traditional tools of C and assembly. L4 is interesting here
because: (i) it is a microkernel design developed within the systems commu-
nity, and hence reflects the priorities and goals of that community rather than
those of programming language researchers; and (ii) there are informal but
detailed specifications for several flavors of L4, as well as multiple working
implementations that can provide a basis for comparison and evaluation.

The experience using Haskell was generally positive, and we found that sev-
eral aspects of the language—particularly purity and strong typing—were very
useful in both structuring and reasoning, albeit informally, about the code.
Specifically, the pure semantics of Haskell makes information flow explicit (and
hence more readily checked) via functional parameters instead of being hidden
in global variables, while the expressive polymorphic type system promotes
flexibility while also tracking use of side-effects using monads. At the same
time, however, we encountered some problems in areas having to do with low-
level operations, performance, run-time systems issues, and resource manage-
ment. For example, functions involving manipulation of registers, I/O ports,
or memory-based data structures or requiring use of special CPU instructions,
were implemented in House by using the Haskell foreign function interface
(FFI). Some of the required functions were already provided by the FFI (for
example, for peeking or pokeing into memory), while others were handled by
using the FFI to package low-level C or assembly code as Haskell primitives.
Unfortunately, some of these functions violate the type- and memory-safety
guarantees of Haskell, enabling us to write and run buggy code with problems
that potentially could have been prevented or caught at compile-time.

The design of Habit is intended to preserve (or enhance!) those aspects of
Haskell that we found to be most useful in our previous work, but also seeks to
address the problems that we encountered. Some of the changes—such as sup-
port for bitdata and strongly-typed memory areas [3, 2, 4]—were directly mo-
tivated by our previous experiences with Haskell. Others leverage ideas from
past research—such as the work by Launchbury and Paterson on foundations
of integrating unpointed types into Haskell [12], which we have developed into a
full language design—or reflect engineering decisions and shifts in priorities—
such as the move to a call-by-value semantics instead of the lazy semantics of
Haskell—to better target the systems programming domain. One practical ad-
vantage of basing the design of Habit on Haskell [14] is that it avoids the need
or temptation to develop fundamentally new syntactic notations or semantic
foundations. As a result, from the low-level lexical structure of identifiers to
the syntax and interpretation of type class declarations, many aspects of Habit
will already be familiar to anyone with prior Haskell experience.
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3 A Survey of the Habit Programming Language

This section provides a detailed, albeit informal survey of the Habit language
in the form of an annotated grammar. In addition to documenting the basic
syntax, the associated commentary also highlights technical aspects of the lan-
guage design. Familiarity with grammars, type systems, and other aspects of
programming language design is assumed throughout, especially in relation
to the design of Haskell [14]. Although we include a few examples to illustrate
the grammar constructs, we should note that this section is not intended as an
introductory tutorial to programming in Habit.

We begin our tour of the language with summaries of notational conventions
(Section 3.1) and basic lexical syntax (Section 3.2). With those foundations, we
then follow up with details of the syntax of types (Section 3.3), expressions
(Section 3.4), patterns (Section 3.5), and programs (Section 3.6).

3.1 Notational Conventions

Our presentation of the Habit grammar in this and subsequent sections uses
the following notational conventions.

• Nonterminal symbols are written with an initial capital letter.

• Keywords are written in lowercase, exactly as they are written in Habit
programs. The full list of keywords, in alphabetical order, is as follows:

area bitdata case class data deriving do else extends fails if

in infix infixl infixr instance let of struct then type where

• The five symbols |, (, ), ,, and = have special roles in the notation that
we use here, but they are also terminals in the grammar of Habit. To
avoid confusion, we write these symbols between double quotes as "|",
"(", ")", ",", and "=", respectively, to represent literal occurrences of
those symbols as part of a production. All other symbols appearing in
the grammar should be interpreted as part of the Habit language. The
full list of reserved symbols, separated by spaces (and without any dis-
ambiguating double quotes), is as follows:

( ) | = , ‘ { ; } [ ] \ <- -> => :: #. @ _ .

• Grammar rules are written using the notation:

N = rhs1

| ...

| rhsn
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where N is a nonterminal name and each right hand side (rhs) (after the
first = symbol on the first line or the first | on subsequent lines) is a se-
quence of symbols corresponding to a production. Each production may
span multiple lines so long as all of the symbols are indented to the right
of the initial = or |.

• Fragments of grammar are annotated using Haskell commenting con-
ventions: a -- sequence introduces a one line comment that extends to
the end of the line on which it appears and a {- ... -} pair provides a
nested comment that may span multiple lines. In particular, for clarity,
we write {-empty-} to indicate an empty right hand side of a production.

• As a notational convenience, we allow the use of parameterized grammar
definitions in which the definition of a nonterminal may be annotated
with one or more formal parameters, written with an initial upper case
letter, enclosed in parentheses, and separated by commas. Each use of a
parameterized nonterminal in the right hand side of a production should
specify a sequence of symbols to be substituted for the corresponding
formal parameter. The following examples capture common patterns that
are used throughout the grammar:

Opt(X) = {-empty-} -- optional X

| X

List(X) = X -- one or more Xs

| X List(X)

List0(X) = Opt(List(X)) -- zero or more Xs

Sep(X,S) = X -- one or more Xs separated by S

| X S Sep(X,S)

Sep0(X,S) = Opt(Sep(X,S)) -- zero or more Xs separated by S

Sep2(X,S) = X S Sep(X,S) -- two or more Xs separated by S

Parameterized rules like these are interpreted as macros for generating
productions, and the grammar is only valid if the process of macro ex-
pansion is guaranteed to terminate. For example, the following definition
for Inv is not valid:

Inv(X) = X Inv(Inv(X)) -- invalid!

On the other hand, the next definition, for Inf, is technically valid, but
not useful in practice because it does not derive any finite strings:

Inf(X) = X Inf(X) -- infinite sequences of X

• The productions in this report are written for clarity of presentation, and
not for use with any specific parsing technologies or tools. For example,
we make no attempt to identify or eliminate LR parsing conflicts.
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3.2 Lexical Syntax

The lexical syntax of Habit follows the definition of Haskell [14, Chapter 2]
with some extensions for the syntax of literals:

• Comments and whitespace. Habit uses the same syntax and conventions
for comments and whitespace as Haskell. In particular, a single line com-
ment in Habit begins with the two characters -- and a nested comment,
which may span multiple lines, begins with {- and ends with -}.

• Literate files. Although it is not formally part of the language, Habit im-
plementations are expected to support the use of literate files in which
lines of code are marked by a leading > character in the leftmost column
and all other lines are considered to be comments. As in Haskell, com-
ment and code lines must be separated by at least one blank line.

In practice, we expect that Habit implementations will distinguish be-
tween literate and regular source code by using the suffix of the source
filename. The default convention is to use an .lhb suffix to indicate a
literate source file or an .hb suffix to indicate a regular source file.

• Identifier and symbol syntax. Habit follows Haskell conventions for writ-
ing identifiers and symbols [14, Section 2.2]. Identifiers beginning with
an upper case letter (represented by Conid in the grammar) and sym-
bols that begin with a leading colon (represented by Consym) are treated
as constructors. Other identifiers (Varid) and symbols (Varsym) are typi-
cally used as variable or operator names. Symbols may be used in places
where identifiers are expected by placing them between parentheses, as
in (+). Identifiers may be used in places where operators are expected by
placing them between backticks, as in ‘div‘. The following productions
show how these alternatives are integrated in to the syntax for variable
names and operator symbols that is used elsewhere in the grammar.

Var = Varid -- Variables

| "(" Varsym ")"

Varop = Varsym -- Variable operators

| ‘ Varid ‘

Con = Conid -- Constructors

| "(" Consym ")"

Conop = Consym -- Constructor operators

| ‘ Conid ‘

Op = Varop -- Operators

| Conop

Id = Varid -- Identifiers

| Conid

A slightly different set of conventions is used in Habit type expressions
(Section 3.3.2) to include the function type constructor ->, allow only
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Varids as type variables, and interpret Varsyms as type constructors. This
allows the use of operator symbols like +, *, and < in predicates from the
standard Habit environment, and so enables the use of traditional nota-
tion for type-level arithmetic (Section 3.3.4).

Tyvar = Varid -- Type variables

Tyvarop = ‘ Varid ‘ -- Type variable operators

Tycon = Con -- Type constructors

| "(" Varsym ")"

| "(" -> ")"

Tyconop = Conop -- Type constructor operators

| Varsym

| ->

Tyop = Tyvarop -- Type operators

| Tyconop

• Integer literals. The syntax for integer literals in Habit—represented by
IntLiteral in the grammar—mostly follows Haskell, but also adopts the
following three extensions:

– Binary literals. In addition to decimal literals, hexadecimal literals
(beginning with 0x or 0X and followed by a sequence of hexadeci-
mal digits), and octal literals (beginning with 0o or 0O and followed
by a sequence of octal digits), Habit allows binary literals that begin
with either 0b or 0B and are followed by a sequence of one or more
binary digits. For example, the tokens 11, 0xB, 0o13, and 0b1011 rep-
resent the same value using decimal, hexadecimal, octal, and binary
notation, respectively.

– Underscores. Habit allows underscore characters to be included at
any point in an integer literal (after the initial prefix that specifies a
radix, if present). Underscores can be used to increase the readabil-
ity of long literals (such as 0b111_101_101, 0x_ffff_0000_, or 100_000)
but are otherwise ignored.

– Literal suffixes. A single K, M, G, or T suffix may be added to a numeric
literal to denote a multiplier of 210 (kilo-), 220 (mega-), 230 (giga-),
or 240 (tera-). Such notations are common in systems programming,
but programmers should note that Habit uses the binary interpre-
tations for these suffixes and not the decimal versions that are com-
monly used in other scientific disciplines.

Habit allows arbitrary length integer literals but uses a type class called
NumLit to determine which literals can be used as values of which nu-
meric types. For example, the integer literal 9 can be used in places where
a value of type Bit 4 is required, but not in places where a value of type
Bit 3 is required because the standard binary representation of the num-
ber 9 does not fit in 3 bits. Further details about the treatment of numeric
literals in Habit are provided in Section 4.5.
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• Bit Vector literals. Habit provides syntax for (fixed width) bit vector lit-
erals. Each of these tokens begins with a capital letter to specify a par-
ticular radix and includes a sequence of one or more digits of that radix,
optionally interspersed with underscores to increase readability. The ini-
tial character may be B to specify binary notation (with one bit per digit),
O to specify octal notation (with three bits per digit), and X to specify hex-
adecimal notation (with four bits per digit). For example, the tokens XB,
O13, and B1011 all represent the same numeric value, except that the sec-
ond is a value of type Bit 3 while the first and third are values of type
Bit 4. Note that leading zeros are significant in bit vector literals. For
example, the tokens B_0000 and B0 are not equivalent because the corre-
sponding values have different types. Bit vector literals are represented
by the BitLiteral terminal in the grammar.

• Other Literal Types. Habit does not currently include syntax for float-
ing point, character, or string literals because none of these types are
included in the standard Habit environment. There are, for example, sev-
eral design choices to be made in deciding how string literals might be
supported, including details of character set encoding (as ASCII bytes,
raw Unicode, UTF8, etc.) as well as representation (possibilities include:
padded to some fixed length; null terminated; length prefixed; a list of
characters, as in Haskell; or some combination of these, perhaps utilizing
Habit’s overloading mechanisms). Once we have gained sufficient expe-
rience to know which of these approaches will be most useful in practice,
future versions of this report may extend the language to include sup-
port for these types. In that event, we would naturally expect to follow
the Haskell syntax for literals.

• Layout. Habit uses a layout rule, as in Haskell, to allow automatic inser-
tion of the punctuation that is used for lists of declarations, alternatives,
statements, etc. The layout rule is triggered when the grammar calls for a
{ symbol at a point in the input where a different symbol appears. Writ-
ing n for the column at which this symbol appears, the compiler then
behaves as if a { character had been inserted at column n, and then pro-
cesses the rest of the input, inserting a ; symbol each time it finds a new
token on a subsequent line with this same indentation. This continues
until the first symbol with an indentation less than n is found, at which
point a closing } symbol is inserted and this instance of the layout rule
concludes. A precise description of the layout rule is given in the Haskell
report [14, Sections 2.7 and 9.3]. Habit uses the same approach, except
that it does not insert a ; symbol in front of the keywords then, else, of, or
in; this allows a more natural syntax for conditionals and local definitions
in do notation (Section 3.4.1) and instance declarations (Section 3.6.5).
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3.3 Kinds, Types, and Predicates

Habit is a strongly-typed language, requiring every expression to have an as-
sociated type that characterizes, at least approximately, the set of values that
might be produced when it is evaluated. Using types, for example, a Habit
compiler can distinguish between expressions that are expected to produce
a Boolean result and expressions that are expected to evaluate to a function.
From this information, a compiler can report an error and reject any program
that attempts to treat a Boolean as a function or vice versa. In this way, types
serve both as a mechanism for detecting program bugs and as a way to docu-
ment the intended use or purpose of an expression, function, or value. Habit
uses a similar approach to enforce correct use of types, associating a unique
kind with each type constant and type variable, and rejecting any type expres-
sion that is not well-formed (i.e., for which there is no valid kind). In addition
to types and kinds, Habit uses (type class) predicates to identify sets of types
with particular properties or to capture relationships between types.

In this section, we describe the Habit syntax for kinds, types, type signatures,
predicates, and type functions. These concepts provide the foundation for the
Habit type system, just as they do for Haskell. Indeed, the Habit type system
is not fundamentally different from the type system of Haskell, which also
relies on the use of kinds, types, and predicates. Where the languages differ
is in the set of primitive kinds, types, and predicates that are built in to the
language; although some details of the Habit primitives are hinted at in this
section, most of that information is deferred to the discussion of the standard
Habit environment in Section 4.

3.3.1 Kinds

Every valid type expression in Habit, including type variables and type con-
stants, has an associated kind that takes one of the following five forms:

• The kind *, which can also be written as type, represents the set of nullary
type constructors, including basic types like Bool and Unsigned.

• The kind nat represents the set of type-level numbers. In this report, we
will typically use names beginning with the letter n for type variables
of kind nat (or names beginning with the letter l for type variables that
represent alignments). Specific types of kind nat are written as integer
literals. For example, when they appear as part of a type expression, the
integer literals 0, 0x2a, and 4K are all valid type-level numbers of kind nat.

• The kind area represents the set of types that describe memory areas. In
this report, we will typically use names beginning with the letter a for
type variables of kind area. Informally, a type of kind area describes a
particular layout of data in memory and, as such, creates a distinction
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between values (whose types are of kind *) and in-memory representa-
tions (whose types are of kind area). Habit programs cannot manipulate
area types directly, but instead access them through references: if a is a
type of kind area, then the type Ref a, which has kind *, represents refer-
ences to memory areas with layout a.

• The kind k -> k’ represents the set of type constructors that take an ar-
gument of kind k and produce a result of kind k’. For example, the
Ref type constructor mentioned previously is a type constant of kind
area -> *. The function type constructor, ->, also has an associated kind:
* -> * -> *. This indicates that a type expression of the form d -> r can
be valid only if the subexpressions d and r have kind *, in which case the
whole type expression also has kind *. This example also illustrates two
small details about the syntax for kinds. First, note that the same symbol,
->, is used to form both function kinds and function types. It is always
possible, however, to distinguish between these two uses from the sur-
rounding context. Second, in both cases, the -> operator is assumed to
group to the right. As a result, the kind expression * -> * -> * is really
just a shorthand for * -> (* -> *).

• The kind lab represents field labels that can be used to identify compo-
nents in bitdata and structure types. In this report, we will typically use
names beginning with the letter f (a mnemonic for field label) for type
variables of kind lab. For each identifier, x (either a Varid or a Conid),
there is a corresponding type #.x of kind lab as well as a unique value,
also written #.x, of type Lab #.x; the Lab type constructor is a primitive
with kind lab -> *. These mechanisms, described in more detail in Sec-
tion 4.3, are intended to support a flexible approach to dot notation in the
implementation of core Habit features and high-level library code and
are not expected to be used heavily in application code.

These kinds are the same as those of Haskell but with the addition of nat, area,
and lab, and the introduction of type as a synonym for *. In the following
grammar for kind expressions, we distinguish between kinds (Kind) and atomic
kinds (AKind); this enables us to capture right associativity of -> as part of the
grammar, but the distinction has no other, deeper significance1.

Kind = AKind -> Kind -- function kinds

| AKind -- atomic kinds

AKind = * -- nullary type constructors

| type -- a synonym for *

| nat -- type-level naturals

| area -- memory areas

1The definition of Haskell does not provide a concrete syntax for kinds. We include a syn-
tax for kinds in Habit because it can be useful to annotate type parameters in datatype and class
definitions with explicit kinds. In fact, similar extensions are already used in existing Haskell
implementations.
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| lab -- field labels

| "(" Kind ")" -- parentheses

Note that type and area are Habit keywords, but *, nat, and lab are not re-
served symbols and hence they can be used outside kind expressions as regu-
lar variable/operator names. In addition, as a consequence of the lexical rules
for constructing symbols, it is necessary to include spaces when writing a kind
such as * -> *; without spaces, this would instead be treated as a four charac-
ter Varsym symbol, *->*. In this particular example, the same kind can also be
written as type->type without having to worry about inserting extra spaces.

3.3.2 Types

The syntax of types in Habit is described by the following grammar:

Type = AppType List0(Tyop AppType) -- infix syntax

Tyop = Tyconop -- type constructor operator

| Tyvarop -- type variable operator

AppType = List(AType) -- applicative syntax

AType = Tyvar -- type variable

| Tycon -- type constructor

| "(" ")" -- the unit type

| IntLiteral -- type-level numeric literal

| #. Id -- type-level label literal

| AType . Id -- selection

| "(" Tyop ")" -- type operator

| "(" Type Opt(:: Kind) ")" -- parentheses

The atomic types, represented in the grammar by AType, are type variables,
constants (including named type constructors, the unit type, type-level num-
bers of kind nat, and labels of the form #.x), selections (described further in
Section 4.3), and parenthesized type expressions.

Type applications are written as sequences of one or more atomic types. Ap-
plication, which is denoted by juxtaposition, is treated as a left associative op-
eration, so an application of the form t1 t2 t3 is treated in exactly the same
way as a combination of two applications, (t1 t2) t3. Here, t1 is first ap-
plied to t2, and then the resulting type, t1 t2, is applied to the third argument,
t3. In a well-formed type application t t1 ... tn of an atomic type t to a
sequence of arguments t1, . . . , tn, the type t must have a kind of the form
k1 -> ... -> kn -> k, where k1 is the kind of t1, . . . , kn is the kind of tn, and k

is the kind of the resulting type expression.

Finally, the grammar for Type allows us to build complete type expressions as
sequences of type applications separated by infix operators, including a spe-
cial case for the function type constructor, ->, which has kind * -> * -> *. This
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grammar reflects the fact that type application has higher precedence than
any infix operator. For example, a type expression of the form t a -> s b is
parsed as (t a) -> (s b) and not as t (a -> s) b or any other such variant.
As written, the grammar for Type does not specify whether a type expression
of the form t1 op1 t2 op2 t3 should be parsed as (t1 op1 t2) op2 t3 or as
t1 op1 (t2 op2 t3), but these ambiguities can be eliminated in practice using
declared fixity information (see Section 3.6.2). For example, the function type
constructor, ->, has fixity infixr 5, and hence a type expression of the form
a -> b -> c is parsed as a -> (b -> c). Despite differences in syntax, a type
expression that is formed using infix operators is really just another way of
writing a type application in which the operator is applied first to the left ar-
gument and then to the right. For example, the type expressions s -> t and
(->) s t are different ways for writing the same type.

The standard types in Habit are summarized by the table in Figure 1; further
details are provided in Section 4, and the constructs that Habit provides for
user-defined types are described in Sections 3.6.7, 3.6.8, and 3.6.9.

Type Interpretation
t -> t’ functions from values of type t to values of type t’

Bool Booleans, False and True

WordSize the number of bits in a machine word as a type-level num-
ber

Unsigned unsigned integers of width WordSize

Signed signed integers of width WordSize

() a unit type whose only element is also written as ()

Maybe t optional value of type t: either Nothing or Just x for some
x :: t

Nat n singleton types, introduced into programs solely via nu-
meric literals; the only element of Nat n is the natural n

Ix n index values (integers) in the range 0 to (n-1)

Bit n bit vectors of length n

ARef l a references to memory areas of type a with alignment l
Ref a references with default alignment
APtr l a pointers to memory areas of type a with alignment l
Ptr a pointers with default alignment
Array n a memory areas containing an array of n elements of type a

Pad n a an inaccessible area of padding, taking the same space as
an Array n a.

Init a initializers for memory areas of type a

Lab f field label types; for each #.x of kind lab, there is a corre-
sponding field label value, also written #.x, of type Lab #.x

Figure 1: Standard Habit Types
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3.3.3 Type Signatures

Every top-level or locally defined variable in a Habit program has an associ-
ated type signature, which is calculated automatically by the compiler using a
process of type inference. However, it is also possible (and generally recom-
mended) for Habit programs to include explicit type signature declarations,
which can serve as useful documentation and as an internal consistency check
on the source code: if a declared type does not match the inferred type, then a
compile-time diagnostic will be produced. The syntax for writing type signa-
tures is described by the SigType nonterminal in the following grammar:

SigType = Opt(Preds =>) Type -- (qualified) type signature

Preds = "(" Sep0(Pred, ",") ")" -- predicate context

| Pred -- singleton predicate context

A type signature that includes type variables represents a polymorphic type that
can typically be instantiated in multiple ways within a single program2, and a
value or function with a polymorphic type is commonly referred to as a poly-
morphic value or a polymorphic function, respectively.

A standard example of a polymorphism is the identity function, id, which is
defined as follows:

id :: a -> a

id x = x

Here, the declared type includes the type variable a, indicating that we can
apply the function id to an argument of any type, say T, to obtain a result with
the same type, T. As a result, the id function may be treated as having any or
all of the following types in a given program:

Unsigned -> Unsigned -- a is Unsigned

Bool -> Bool -- a is Bool

(Unsigned -> Bool) -> (Unsigned -> Bool) -- a is (Unsigned -> Bool)

It is useful, in some cases, to restrict the ways in which type variables can be
instantiated within a polymorphic type signature. This is accomplished by pre-
fixing a type signature with a context, which is a list of zero or more predicates,
represented in the preceding grammar by the Preds nonterminal. Type signa-
tures of this form are sometimes referred to as qualified types because of the way

2Technical note: Habit supports only limited polymorphic recursion, and any program that
potentially requires the use of a single variable at infinitely many distinct types will be rejected
at compile-time. This restriction is designed to allow (although not require) implementations of
Habit that use specialization rather than boxing to handle polymorphism.

17



that they restrict, or qualify the use of polymorphism [7]. Details of the syn-
tax for predicates, as well as a survey of the predicates that are defined in the
standard Habit environment are provided in the next Section.

3.3.4 Predicates

The syntax for individual predicates is described by the following grammar:

Pred = AppPred Opt("=" Type) Opt(fails)

| SelPred "=" Type Opt(fails)

| "(" Pred ")"

AppPred = Type Tyconop Type -- predicate with applicative syntax

| PrePred

PrePred = Tycon -- predicate with prefix syntax

| PrePred AType

| "(" AppPred ")"

SelPred = AType . Id -- selection

| "(" SelPred ")"

For practical purposes, however, predicates are likely to be parsed as expres-
sions of the form Type Opt("=" Type) Opt(fails), with subsequent checks to
ensure that the result can be interpreted as an application C t1 ... tn, where C

is a Tycon that names an n-parameter type class and t1, . . . , tn are appropriately
kinded types. (The optional "=" Type portion of a predicate is used for type
functions when the class C has an appropriate functional dependency while
an optional fails suffix indicates the negation of a predicate; these details are
discussed more fully in Sections 3.3.5 and 3.6.5, respectively.)

For example, the predicate Eq t (the result of applying the predicate name Eq

to an argument type t) asserts that the type t must be a member of the set
of equality types, written Eq, which includes precisely those types whose el-
ements can be compared for equality using the == operator. More generally,
a predicate with multiple parameters can be used to document relationships
between types. As an example of this, a predicate ValIn a t (which again is
an application, this time of a predicate name ValIn to two arguments, a and t)
asserts that a memory region of type a can be used to store a value of type t.

Generalizing from these examples, a predicate of the form C t1 ... tn can be
interpreted as an assertion that the types t1, . . . , tn are related by the type class
C. The standard Habit environment includes several built-in type classes; these
are summarized by the table in Figure 2 and further details are provided in Sec-
tion 4. (In particular, the classes Eq, Ord, Bounded, Num, and Monad are very similar
to classes with the same names in the Haskell standard prelude.) Habit also
supports the introduction of user-defined classes (see Sections 3.6.4 and 3.6.5).
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Predicate Interpretation
Eq t t is an equality type whose elements can be compared us-

ing ==

Ord t t is a totally ordered type with ordering tests (<, <=, >, >=)
and max/min operators

Bounded t t is a bounded type with maximum and minimum ele-
ments

Num t t is a numeric type with basic operations of arithmetic
NumLit n t a numeric literal for n can be used as a value of type t

Boolean t t is a type whose elements support Boolean logical opera-
tors and, or, xor, and not

Shift t t is a type that supports bitwise shift operations
ToBits t values of type t are represented by bit vectors that can be

extracted using the toBits function
FromBits t values of type t can be constructed from a bit-level repre-

sentation using the fromBits function
BitManip t individual bits in a value of type t can be accessed and

manipulated using indices of type Ix (BitSize t)

Update r f values of type r have a field labeled f (of type Select r f)
that can be updated

ToUnsigned t values of type t can be converted into Unsigned values (by
zero extending, if necessary)

ToSigned t values of type t can be converted into Signed values (by
sign extending, if necessary)

Monad m m is a monad type constructor
MemMonad m m is a monad that supports memory operations
Index n n is a valid size for an Ix type
Width n n is a valid width for bit-level operations
Alignment l l is a valid memory area alignment
n <= m type-level number comparison: n is less than or equal to m

n < m type-level number comparison: n is less than m

Pointed t t is a pointed type, which enables the use of recursive def-
initions at type t

t =<= t’ if t is pointed, then so is t’; this is required for a function
type t -> t’ to be valid

Initable a areas of type a have a default initializer
NoInit a areas of type a do not require initialization
NullInit a areas of type a can be null-initialized

Figure 2: Standard Habit Type Classes
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3.3.5 Type Functions

While type classes can be used to describe very general (for example, many-to-
many) relations on types, many of the examples that we use in practice have
more structure that can be documented by developers (by annotating the class
declaration with one or more functional dependencies [9]) and then exploited
by compilers (by using the information as part of the type inference process to
obtain more accurate types [8]). In particular, it is often the case that one of the
parameters is uniquely determined by the specific types that are used as the
other parameters. A relation with this property can be viewed as a function
on types. In particular, if the last parameter, tn, of a predicate C t1 ... tn is
uniquely determined by (some subset of) the rest of the parameters, then we
refer to C as a type function with n parameters. In such cases, we also allow (but
do not require) the predicate to be written as C t1 ... = tn with an = symbol
before the last argument to emphasize the functional nature of C. For a three
parameter type function like + whose name is an operator symbol, we can also
use the name as an infix operator on the left of the = symbol. For example, the
predicate (+) x y z can also be written as (+) x y = z or as x + y = z.

Habit also adopts a simple syntactic mechanism that allows type functions to
be used within type signatures [10]. Specifically, if C is a type function with n
parameters, then any type of the form C t1 ... with n − 1 arguments will be
replaced by a new type variable, say t, together with the addition of an extra
predicate, C t1 ... = t in the context of the type signature. For example, the
standard Habit environment includes a div operator whose type indicates that
the divisor must not be zero, preventing the possibility of a division by zero
exception at run time:

div :: t -> NonZero t -> t

In fact, NonZero is a two parameter type function and so the type of div can also
be written as:

div :: (NonZero t t’) => t -> t’ -> t

The latter type signature indicates that the types t and t’ for the dividend
and the divisor, respectively, must be related by the NonZero class and hence
hints (correctly) that the div operator is not completely polymorphic (because it
cannot be applied in cases where there is no appropriate instance of the NonZero

class). The original type signature, on the other hand, is more concise and
may seem more natural to many programmers, although it could potentially
be confusing to readers who do not realize that NonZero is a type function and
assume (incorrectly) that div is fully polymorphic. In Habit, these two type
signatures for div are completely interchangeable, leaving the programmer to
choose when one is more appropriate than another on a case by case basis.
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The standard Habit environment includes several built-in type functions, sum-
marized by the table in Figure 3. Each of the predicates in this table is written
with an explicit = symbol to emphasize the use of a type function. Further de-
tails and explanations for each of these type functions are provided in Section 4.
Of course, type functions and type classes in Habit are completely interchange-
able, so the constructs that are used to define type classes can also be used to
define new type functions (see Sections 3.6.4 and 3.6.5).

Predicate Interpretation
n + m = p p is the sum of n and m

n - m = p p is the difference of n and m

n * m = p p is the product of n and m

n / m = p p is the result of dividing n by m, with no remainder
n ^ m = p p is the result of raising n to the power m
GCD n m = p p is the greatest common divisor of n and m

NonZero t = t’ nonzero values of type t are represented by values of type
t’; in particular, values of type t can be divided by values
of type t’ (which can also be written as NonZero t) without
triggering a divide by zero exception

Select r f = t r has a component with field label f of type t

BitSize t = n values of type t are represented by bit vectors of width n

ByteSize a = n a memory area of type a occupies n bytes in memory
ValIn a = t a memory area of type a stores a value of type t

LE t = a a holds a little-endian representation for values of type t

BE t = a a holds a big-endian representation for values of type t

Stored t = a a holds a value of type t in the platform’s default format

Figure 3: Standard Habit Type Functions

The first few type functions listed in Figure 3 are noteworthy because they pro-
vide a notation for expressing arithmetic relations within types. For example,
the (:#) operator, which concatenates a pair of bit vectors, has the following
type (simplified for this example; see Section 4.8 for the full type):

(:#) :: Bit m -> Bit n -> Bit (m + n)

This signature neatly captures the relationship between the lengths of the two
inputs and the length of the result, but it can also be written in either of the
following equivalent forms that expose the underlying type class:

(:#) :: (n + m = p) => Bit m -> Bit n -> Bit p

(:#) :: ((+) n m p) => Bit m -> Bit n -> Bit p
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3.4 Expressions

The syntax of expressions in Habit is described by the following grammar:

Expr = Applic -- applicative expressions

| LetExpr -- local definition

| IfExpr -- conditional expression

| CaseExpr -- case expressions

A parallel grammar is used for statements, which are expressions that appear
in a known monadic context. We make a distinction between expressions and
statements in the grammar because it allows us to use some notational short-
cuts in writing monadic code (such as eliding the do keyword and omitting the
else part of a conditional), but the distinction is purely syntactic and anything
matching the Expr nonterminal can be used whenever a Stmt is expected.

Stmt = Applic -- applicative expressions

| LetStmt -- local definition

| IfStmt -- conditional statement

| CaseStmt -- case statement

3.4.1 Applicative Expressions

The core of the expression syntax for Habit is shown in the following grammar:

Applic = \ List(APat) -> Expr -- anonymous function

| do Block -- monadic expression

| InfExpr Opt(:: Type) -- typed expression

InfExpr = AppExpr List0(Op AppExpr) -- infix operators

AppExpr = List(AExpr) -- prefix application

AExpr = Var -- variable name

| Con -- constructor

| Literal -- literal/constant

| AExpr . Id -- selection

| AExpr [ Fields ] -- update expression

| "(" ")" -- unit

| "(" Expr ")" -- parenthesized expression

| "(" AExpr Op ")" -- left section

| "(" Op AExpr ")" -- right section

| "(" Sep2(Expr, ",") ")" -- tuple

| Conid [ Sep (Id <- Expr, "|") ] -- structure initializer

Fields = Sep(Id Opt("=" Expr), "|") -- field bindings

Literal = IntLiteral -- natural number

| BitLiteral -- bit vector literal

| #. Id -- field label literals
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Habit broadly follows the syntax of Haskell for lambda terms, do notation (syn-
tactic sugar for monadic terms), function applications (using prefix or infix syn-
tax, but without Haskell’s special case for unary negation), tuples, and atomic
expressions. Note, however, that Habit does not provide special syntax for
Haskell-style list comprehensions, arithmetic list ranges, or list enumerations.

Dot notation (Section 4.3) is used to indicate selection in Habit expressions;
intuitively, an expression of the form r.x returns the value of the x component
of the object r. In particular, dot notation can be used to access all of the fields
of bitdata (Section 3.6.8) and structure types (Section 3.6.9).

Update expressions of the form r[x=e] provide a syntax for constructing a
value that is almost the same as the target, r, but with the x field replaced by
the value of e. Multiple updates can be combined in a single field list, with an
expression like r[x=e1|y=e2] describing a simultaneous pair of updates. In par-
ticular, update expressions are supported for all bitdata types (Section 3.6.8).
Of course, expressions like these are only valid if the value described by r in-
cludes the referenced fields. The mechanisms that are used to ensure correct
usage of field names in Habit are described in Section 4.3. As a special case,
if the target in an update expression is a bitdata constructor name, then the
update is interpreted instead as bitdata construction. For example, B[x=0|y=1]
constructs a bitdata value, assuming that B has been declared elsewhere in the
program as a bitdata constructor with appropriately typed fields x and y.

Finally, Habit provides special syntax for describing structure initializers using
expressions like S[x<-0]; this is described in more detail in Section 3.6.9.

3.4.2 Blocks

The Block nonterminal describes a sequence of statements, separated by semi-
colons and enclosed in braces. This allows blocks to be written using layout
instead of explicit punctuation.

Block = { Stmts }

Stmts = Opt(Var <-) Stmt ; Stmts -- monadic bind

| let DeclBlock ; Stmts -- local definition

| Stmt -- tail call

Note that the bind and local definition forms of Stmts can introduce new vari-
ables that scope over the rest of the list of statements. In the case of a bind,
the result produced by the first statement call can be bound to a variable, but
not to a pattern because there is no built-in mechanism in Habit for describing
(pattern matching) failure in a monad.

Recall from Section 3.2 that the variant of the layout rule that is used in Habit
does not insert a ; in front of a then, else, of, or in keyword. This results in a

23



slightly more relaxed (and frequently requested) version of the Haskell layout
rule that admits code of the forms shown in the following examples:

do if ... do case ... do let f x = ...

then ... of p1 -> ... in ... f ...

else ... p2 -> ... s1

s1 s1

These program fragments are interpreted in exactly the same way as the fol-
lowing variants where the relevant keywords are indented by extra spaces:

do if ... do case ... do let f x = ...

then ... of p1 -> ... in ... f ...

else ... p2 -> ... s1

s1 s1

3.4.3 Local Declarations

A local declaration provides bindings (a semicolon-separated list of declara-
tions) for a set of variables that scope over a particular subexpression or block.

LetExpr = let Declblock in Expr -- let expression

LetStmt = let Declblock in Block -- let statement

DeclBlock = { Sep0(Decl, ;) } -- local declaration block

The difference between the LetStmt form shown here and the local definition
construct for Stmts can be demonstrated by the following pair of examples:

do let decls do let decls

in s1 s1

s2 s2

s3 s3

In the code on the left, a LetStmt is used and the variables introduced by decls

scope over the code in statements s1 and s2 but not s3. By comparison, the
same decls scope over all three statements in the code fragment on the right.

3.4.4 Conditionals (if and case)

Habit provides the familiar if-then-else construct for testing Booleans as well
as the standard generalization to case-of for testing the values of a broader
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range of types. In addition, Habit also provides simple variants of each (the
if-from and case-from constructs) for use in monadic code.

The syntax for if-then-else is standard, including a Bool-valued test and ex-
pressions for each of the True and False alternatives. Of course, the two branches
must have the same type, which is then also the type of the conditional expres-
sion as a whole. For the monadic variants, a separate Block may be specified
for each of the two branches, and the False branch may be omitted altogether.
In the latter case, a default of else return () is assumed and the type of the
True branch must be of the form m () for some monad m).

IfExpr = if Expr then Expr else Expr -- if expression

| IfFrom

IfStmt = if Expr then Block Opt(else Block) -- if statement

| IfFrom

IfFrom = if <- Stmt then Block Opt(else Block) -- if-from

The if-from variant, indicated by placing a <- immediately after the if key-
word, can be used when the choice between two alternatives will be made as
a result of the Boolean value that is returned by a statement of type m Bool for
some monad m. The statement:

if<- e then s1 else s2

is syntactic sugar for the following expression that uses an extra, temporary
variable name (x in this example):

do x <- e; if x then s1 else s2

The syntax for case expressions follows a similar pattern, providing an expres-
sion (the scrutinee) whose value is to be examined and a sequence of alternatives
that use pattern matching and guards to distinguish between possible results.

CaseExpr = case Expr of Alts(Expr) -- case expression

| CaseFrom

CaseStmt = case Expr of Alts(Block) -- case statement

| CaseFrom

CaseFrom = case <- Stmt of Alts(Block) -- case-from

Alts(E) = { Sep(Alt(E), ;) } -- alternatives

Alt(E) = Pat Rhs(->, E) -- alternative

Again, there are monadic variants for case statements and case-from state-
ments, the latter allowing the choice between the alternatives to be made on
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the basis of the result returned by a statement of type m t for some monad m,
where t is the type of the patterns in each of the alternatives. More specifically,
the statement:

case<- e of alts

is syntactic sugar for the following expression that uses an extra, temporary
variable name (x in this example):

do x <- e; case x of alts

3.5 Patterns

This section describes the syntax for patterns, which are used to describe the
values that should be matched in function and pattern bindings, lambda ex-
pressions, and case statements. The complete grammar for patterns, repre-
sented by Pat, and atomic patterns, represented by APat, is as follows:

Pat = AppPat List0(Op AppPat) -- infix syntax

AppPat = List(APat) -- application pattern

APat = Var -- variable

| _ -- wildcard

| Var @ APat -- as-pattern

| Con -- constructor

| Con [ PatFields ] -- bitdata pattern

| "(" Sep2(Pat, ",") ")" -- tuple pattern

| "(" Pat :: Type ")" -- typed pattern

| "(" Pat ")" -- parentheses

| Literal -- literal pattern

PatFields = Sep0(Id Opt("=" Pat), "|") -- field patterns

Different patterns, of course, match against different values, and most of the
pattern forms in Habit have the same basic interpretation as they do in Haskell:

• A variable, x, matches any value, binding the variable to that value within
the scope of the pattern. Note that all patterns in Habit are required to
be linear, meaning that no variable name can appear more than once in a
given pattern.

• An as-pattern, x@p, behaves like the pattern p but it also binds the variable
x to the value that was matched against p.

• A wildcard pattern, _, matches any value, without binding any variables.
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• A pattern C p1 ... pn, where C is a constructor function of arity n, will
match against any value of the form C v1 ... vn with the same construc-
tor function so long as each component value v1, . . . , vn matches the cor-
responding pattern p1, . . . , pn. In general, fixity information is required
to identify valid constructor expressions. For example, until we have de-
termined whether an input like (x ‘C‘ y ‘D‘ z) t should be treated as
(C x (D y z) t) or as (D (C x y) z t), we cannot check that each of C

and D has the correct number of arguments.

• A tuple pattern (p1, ..., pn) matches against tuple values of the form
(v1, ..., vn) so long as each component value v1, . . . , vn matches the
corresponding pattern p1, . . . , pn. (Of course, the type system ensures
that there are exactly the same number of pattern and value components
in any such match.)

• A pattern B [ f1 | ... | fn ], where B is a constructor function of a bit-
data type (see Section 3.6.8), will match any value that can be produced
by the B constructor, so long as each of the individual field specifications,
f1, . . . , fn, are also matched. Each field specification is either a field name
paired with a pattern, x = p, or just a single field name, x. In the first case,
the match only succeeds if the value of the x field matches the pattern p.
The second case is treated as an abbreviation for x = x. For example, if
x is a Varid, then the match always succeeds, binding the value of the x

field to a variable of the same name within the scope of the pattern. (This
is sometimes referred to as punning because the same identifer string is
used as both a field label and a variable name.) In both cases, the name
x must be a valid field name for the B constructor. A bitdata pattern may
not name the same field more than once, but it is not necessary to list the
fields in the same order as they appear in the original bitdata definition,
or to list all of the fields for B; any fields that are not mentioned will be
treated as if they had been bound by a wildcard pattern.

• Bit patterns, which take the form (p1 :# ... :# pn), match bit values of
the form (v1 :# ... :# vn) (for any type that is an instance of the ToBits

class via an implicit application of toBits; see Section 4.9) so long as each
of the bit vectors v1, . . . , vn matches the corresponding pattern p1, . . . ,
pn. The :# operator used here is a constructor function, mentioned pre-
viously at the end of Section 3.3.5, for concatenating bit vectors, and the
pattern syntax is chosen to mirror the constructor syntax, just as it does
for other forms of pattern. For example, B11 :# B0 yields the value B110

of type Bit 3, and will match the pattern (u :# B10) binding the variable
u to the single bit value B1. It should be possible to infer the widths of
the components in a bit from the context in which they are used; in some
cases this may require the use of typed patterns or other type annotations.

• A literal pattern matches only the specified value, without introducing
any variable bindings.
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There are some additional syntactic restrictions on patterns that are hard to
capture in the grammar for Pat because of the interaction between parsing and
fixity resolution. In particular, we do not allow as-, tuple, bitdata, wildcard, or
literal patterns as the first item of an application pattern p1 ... pn with two or
more APat components. Uses of variables names at the beginning of patterns
like this (or equivalent forms using infix operators) are also restricted. In the
following text, we distinguish between two general pattern forms:

• A data pattern does not contain any subterms of the form f x or x ‘g‘ y

(equivalent to g x y) in which a variable symbol (either a Var or, as part
of an infix expression, a Varop) is applied to one or more arguments.

• A function pattern is a pattern in which a variable symbol is applied to one
or more data patterns. Infix notation is permitted. For example, x ‘g‘ y

is a function pattern in which g is applied to two data patterns x and y.

Almost all uses of patterns in Habit require data patterns. The only exception
is on the left hand side of an equation (Section 3.6.1) where a function pattern
can be used as part of a function definition. Terms matching the Pat grammar
that do not meet the requirements for either data or function patterns are not
valid in Habit.

3.6 Programs

A Habit program consists of a sequence of top-level declarations, each of which
contributes in some way to the interpretation (or, in the case of a fixity declara-
tion, parsing) of a named value or type constructor.

Prog = Sep(TopDecl, ;) -- program

Decl = Equation -- equation in value definition

| FixityDecl -- fixity declaration

| TypeSigDecl -- type signature declaration

TopDecl = Decl

| ClassDecl -- type class declaration

| InstanceDecl -- instance declaration

| TypeDecl -- type synonym declaration

| DataDecl -- data type declaration

| BitdataDecl -- bitdata type declaration

| StructDecl -- structure type declaration

| AreaDecl -- area declaration

Some forms of declaration (specifically, Equation, FixityDecl, and TypeSigDecl,
which make up the alternatives for Decl) can be used within local declarations
as well as at the top-level; the remaining declaration forms within TopDecl can
only be used at the top-level. The declaration of an entity in a Habit program
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may reference other entities defined later in the program, so there is no need
for any explicit form of forward references. Tools processing Habit source code
will use automated dependency analysis to determine program structure (e.g.,
to identify mutually recursive binding groups, and to determine an appropri-
ate order for type checking).

3.6.1 Equations

User-defined values (including functions) are introduced by a sequence of one
or more equations. There are two kinds of equations in a Habit program:

• The left hand side of a function binding comprises the name of the function
and a sequence of patterns corresponding to a sequence of arguments. A
function may be defined by more than one equation, but all of these equa-
tions must appear together in the source code, without intervening dec-
larations, and all of the equations must have the same arity (i.e., the same
number of argument patterns). These restrictions are inherited from the
definition of Haskell, where they have proved to be useful as consistency
checks that help to identify and avoid syntactic errors in input programs.

• A pattern binding is formed by an equation with a pattern on its left hand
side. A pattern binding is evaluated by evaluating its right hand side
expression and then matching the result against the patter on its left hand
side. Pattern bindings should be used with care because failure to match
a pattern for a datatype that has multiple constructors could cause the
matching process to fail, and abort further execution.

The grammar for equations is as follows:

Equation = Lhs Rhs("=", Expr) -- defining equation

Lhs = Var List0(APat) -- for function binding

| Pat -- for pattern binding

Rhs(S,E) = Rhs1(S,E) Opt(where DeclBlock) -- right hand side

Rhs1(S,E) = S E -- unguarded rhs

| List(Guarded(S,E)) -- guarded rhs

Guarded(S,E) = "|" Expr S E

The right hand side of each equation can be either a simple expression or else
a sequence of Boolean guards that will be evaluated in turn until one of the
returns True, at which point the value of the corresponding expression on the
right of the = symbol will be used as the result of the equation. Note that we
use a parameterized name here for Rhs so that we can reuse it as part of the
syntax of case expressions where -> is used in place of =.
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3.6.2 Fixity Declarations

Fixity information, including both associativity and precedence, can be pro-
vided for user-defined operator symbols in both values and types using the
infix, infixr, and infix declarations.

FixityDecl = Assoc Prec Sep(Op, ",") -- operator fixity

| Assoc type Prec Sep(Tyop, ",") -- type operator fixity

Assoc = infixl -- left associative

| infixr -- right associative

| infix -- non associative

Prec = Opt(IntLiteral) -- precedence

Fixity information is used to resolve ambiguities relating from adjacent occur-
rences of infix operators in value and type expressions. Specifically:

• e1 + e2 * e3 will be parsed as (e1 + e2) * e3 if either + has higher prece-
dence than *, or if the two operators have equal precedence and both
group to the left (infixl);

• e1 + e2 * e3 will be parsed as e1 + (e2 * e3) if either * has higher prece-
dence than +, or if the two operators have equal precedence and both
group to the right (infixr);

• e1 + e2 * e3 will be rejected as a syntax error if neither of the two cases
above apply.

The precedence value (Prec in the grammar above) can be any numeric literal
representing a number in the range 0 to 9, inclusive, with higher numbers cor-
responding to higher precedences. If Prec is omitted, then a precedence of 9 is
assumed.

As in Haskell, any symbol that is used as an operator without an explicit fixity
declaration is treated as if it had been declared infixl 9.

Any operator symbol that is named as part of a fixity declaration must have
a corresponding definition elsewhere in the same binding group as the fixity
declaration. An operator symbol may have multiple fixity declarations so long
as the associativity and (implied) precedence is the same in all cases.

3.6.3 Type Signature Declarations

A type signature declaration provides an explicit type for one or more variables
whose definitions appear elsewhere in the same binding group.

TypeSigDecl = Sep(Var, ",") :: SigType -- type signature
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Type signatures are typically used as a form of documentation, but they can
also be used in situations where a more general type might otherwise be in-
ferred. We allow at most one type signature declaration for any single entity;
it would not be too difficult to lift this restriction, but would require the com-
piler to check that all of the declared types are equivalent. As described in the
next section, type signature declarations are also used in class declarations to
specify the names and types of class operations.

3.6.4 Class Declarations

A type class declaration introduces a new type class with a specified name, a
list of parameters, and an associated list of members:

ClassDecl = class ClassLhs -- name and parameters

Opt("|" Sep(Constraint, ",")) -- constraints

Opt(where DeclBlock) -- operations

ClassLhs = TypeLhs Opt("=" TypeParam) -- class header

| "(" ClassLhs ")"

TypeLhs = TypeParam Tyconop TypeParam -- type header

| PreTypeLhs

PreTypeLhs = Tycon -- prefix type header

| PreTypeLhs TypeParam

| "(" TypeLhs ")"

TypeParam = Var -- type parameter

| "(" TypeParam Opt(:: Kind) ")"

Constraint = Pred -- superclass

| FunDep -- functional dependency

FunDep = List0(Var) -> List(Var)

Although we give an explicit grammar, the ClassLhs portion of a class decla-
ration is likely to be parsed as a predicate, with subsequent checks to ensure
that the result can be interpreted as a an application C t1 ... tn, where C is
a Tycon that names a class (not defined elsewhere) and t1, . . . , tn are (zero or
more) distinct type parameters. Each parameter has an associated kind that
can be declared explicitly, or else will be inferred automatically from context
(specifically, from the kinds of previously declared type-constants and from
the structure of the type expressions in this and any other class or type decla-
rations in the same binding group).

Type classes share the same namespace as other type-level constants so it is not
possible to use the same name simultaneously for both a class and a datatype,
for example. (Indeed, any occurrence of a type class name within a type, other
than as part of a predicate, will be interpreted as a use of type functions, as
described in Section 3.3.5.)

A class with n parameters is interpreted as an n-place relation whose elements,
referred to as the instances of the class, are tuples that define an appropri-
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ately kinded type constructor for each class parameter. We use the notation
C t1 ... tn as an assertion that the types t1, ..., tn form a tuple that is included
in the class C. If the assertion is true then we say that C t1 ... tn is a valid
instance. The specifics of determining which instances of a class are valid is de-
scribed independently via a collection of instance declarations (Section 3.6.5).

Beyond specifying the names and types of each parameter, there are two ways
in which a class declaration can be annotated to constrain the set of instances:

• By specifying superclasses, each of which is represented by a predicate in
the list of constraints. If the declaration of a class C begins as follows:

class C a1 ... an | ..., P, ...

where ...

where P is some predicate, then the compiler is responsible for ensuring
that, if C t1 ... tn is a valid instance, then so are all of the predicates in
[t1/a1,...,tn/an]P. Note that the parameters of the class C are the only
variables that may occur in the superclass predicate P.

• By specifying one or more functional dependencies. A dependency anno-
tation a1 ... aj -> b1 ... bk indicates that the choice of the parameters
b1, ..., bk is uniquely determined by the choice of the parameters a1, ..., aj.
For a class that has been annotated with such a dependency, the compiler
must ensure that, if C t1 ... tn and C s1 ... sn are both valid instances
whose components agree on the parameters a1 though aj, then they must
also agree on the parameters b1 through bk.

Each of these features has been widely used in previous Haskell implementa-
tions to express invariants/relationships between class parameters, and for im-
proving the precision of type inference. Note, however, that Habit and Haskell
differ a little in details of the syntax that is used for superclasses. In Haskell,
for example, the code fragment shown above would be written:

class (..., P, ...) => C a1 ... an

where ...

We have opted instead to use the notation described above for Habit because:
(i) it places the name of the class that is being defined immediately after the
opening class keyword so that it is easier to find; and (ii) it avoids a mislead-
ing use of the implication symbol, =>, in a context that, logically, corresponds
to a reverse implication. Note also that, if the ClassLhs portion of a class decla-
ration is written in the form C t1 ... = tn and if there is no explict functional
dependency to indicate that tn is uniquely determined by the first n − 1 pa-
rameters, then a dependency t1 ... -> tn is automatically added to class C.

32



This allows functional notation to be indicated by writing an = symbol without
having to write an explicit dependency.

The (optional) DeclBlock in a class declaration specifies names, types, and, in
some cases, default implementations for the operations that are associated with
the class. Names and types are specified using type signature declarations. The
names of class operations have the same scope as top-level values/functions
and hence should not conflict with the names used for any other top-level en-
tities. It is also possible to include fixity declarations and function definitions,
comprising a sequence of one or more equations, as part of the list of declara-
tions, but only if the associated functions are listed as class operations in the
same list of declarations. A valid fixity declaration in a class can be moved to
the top-level without changing the meaning of the program. If a class provides
default definitions, they will be used if there is no explicit definition for the
corresponding operations in user-provided instance declarations.

3.6.5 Instance Declarations

Instance declarations are used to determine the set of valid instances for each
class in a Habit program. Because type-level programming via classes and in-
stances is expected to be used quite heavily in Habit programs, it is important
to have a flexible mechanism for defining instances. At the same time, in the
interests of keeping the design as simple as possible, we would like to avoid
some of the complexities of type classes in Haskell. In particular, while Habit
disallows the definition of overlapping instances (see below), it also introduces
two new constructs (else and fails). These constructs can be used to deal with
many of the examples that have previously been described using overlapping
instances (as well as providing some new features altogether) while also avoid-
ing some of the problems that they can cause.

The syntax of instance declarations is described by the following grammar.

InstanceDecl = instance Sep(Instance, else)

Instance = Pred Opt(if Preds) Opt(where DeclBlock)

In effect, there are three basic forms of instance declaration, and these can be
combined into a single instance declaration, separated from one another by the
else keyword. This is the only way to write overlapping instances in Habit,
and it also provides a mechanism for defining closed classes.

The first basic form allows us to write instance declarations like the following
without providing any definitions for class operations:

instance C t1 ... tn if P
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In this example, P represents a list of predicates, and the declaration can be in-
terpreted as an implication: if all of the predicates in P are valid instances, then
C t1 ... tn will also be a valid instance. This form of instance declaration is
useful in cases where the class C has no associated operations or where the
definitions of those operations will be filled in by the default implementations
provided in the definition of class C. More often, however, an instance decla-
ration like this is used in documentation, such as this report, to describe a rule
for generating class instances without giving details of its implementation.

The second basic form is similar to the first except that it includes a DeclBlock

with definitions for the operations associated with the class C:

instance C t1 ... tn if P

where ...

There are several restrictions on the declarations that can appear in an instance
declaration like this that are not reflected in the grammar, some of which may
be relaxed in the future. For example the list of declarations cannot include
type signatures, fixity declarations, pattern bindings, or function definitions
for names that are not operations of class C. As in the previous case, default
definitions provided in the definition of class C are used to supplement instance
declarations that do not include explicit definitions for those operations.

The third basic form of instance declaration is used to provide information
about predicates that are not valid instances of a class, and to prevent the def-
inition of such instances in subsequent code. This kind of information can be
useful in type-level programming and can also be used to detect and report
some type errors more promptly. Specifically, a declaration of the following
form specifies that, if all of the predicates in P are valid instances, then there
cannot be any valid instance for the predicate C t1 ... tn, either in the current
program, or in any future extension. Although it is not reflected in the gram-
mar, it is not permitted (and would not make sense) to include a DeclBlock of
definitions in this case.

instance C t1 ... tn fails if P

One simple application for instance declarations like this is to implement the
never form of type class directives [6] to specify, for example, that functions
cannot be compared for equality:

instance Eq (a -> b) fails

If a declaration like this has been included in a program, then the compiler
will report an error if the program attempts to use the equality operator, ==,
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to compare functions. Without such a declaration, the compiler may, instead,
infer types that include a predicate of the form Eq (a -> b). The latter behav-
ior is useful when the programmer envisions that it may be useful to add an
instance for equality on functions in some later version of the program. In this
particular case, however, there is no practical way to define general equality
on functions, and it is useful to state this explicitly so that erroneous code that
assumes such an instance will be detected more promptly.

Programs that include one or more pairs of overlapping instance declarations are
not valid in Habit. For example, although each of the instance declarations in
the following example would be valid on its own, the two declarations overlap
(with common instance IsBool Bool) and cannot appear together:

class IsBool t

where isBool :: t -> Bool

instance IsBool Bool -- Matches only the predicate IsBool Bool

where isBool x = True

instance IsBool t -- Matches any predicate of the form IsBool t

where isBool x = False

This restriction is necessary to ensure a well-defined semantics for isBool. If
we allowed programs like the one above, then there would be two possible
interpretations for the expression isBool True: according to the first instance
declaration, this should produce the Boolean result True, which is obviously
not the same as the Boolean False that would be obtained by following the
second declaration.

Some Haskell implementations allow examples like this by using the syntactic
form of the instance predicates to an infer an implicit ordering between dec-
larations. In examples like the one above, this would give priority to the first
instance declaration, using that for Bool values and falling back on the second
for any other type t. Habit, instead, requires orderings between instance dec-
larations to be specified explicitly using an instance...else... construct:

instance IsBool Bool -- Matches only the predicate IsBool Bool

where isBool x = True

else IsBool t -- Matches other predicates of the form IsBool t

where isBool x = False

More generally, an instance declaration in Habit may take the form:

instance C t1 if P1 ...

else ...

else C tn if Pn ...
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where P1, . . . , Pn are arbitrary contexts, and all of the instance predicates have
the same class C. In this case, it is permitted for the types t1, . . . , tn to overlap,
but any given clause can be used only if the all of the preceding clauses are
guaranteed not to apply. The following instance declaration, for example, is
valid, even though it has identical, and hence overlapping instance predicates:

instance C a if Eq a

where ...

else C a

where ...

The first clause, however, can only be used with equality types, while the sec-
ond has no context (i.e., it will work with any type). As a result, if Eq Bool is a
valid instance, then C Bool follows from the first clause while C (Bool -> Bool)

follows from the second. In the latter case, we have assumed that the pro-
gram also includes the fails instance for Eq (a -> b) that was given previ-
ously, which can be used to confirm that the precondition, Eq (Bool -> Bool),
of the first clause does not hold.

Combinations of else and fails can be used to define a wide range of type
class relations and type functions in a natural and concise manner. The fol-
lowing examples illustrate this with the definition of a closed class, Closed that
is guaranteed to have only two valid instances, and the definition of a type
function, NumArgs, that calculates the number of arguments in a function type.

class Closed (t :: *)

instance Closed Bool

else Closed Int

else Closed t fails

class NumArgs (t :: *) = (n :: nat)

instance NumArgs (d -> r) = 1 + NumArgs r

else NumArgs t = 0

3.6.6 Type Synonym Declarations

A type synonym declaration introduces a new name for an existing type.

TypeDecl = type TypeLhs "=" Type -- type synonym declaration

Type synonyms are typically used to provide convenient abbreviations for more
complex type expressions, or to document intensions about how a particular
value will be used, but they do not introduce new types.
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To be well-formed, all of the variables appearing in the type on the right of
the = symbol in a type synonym declaration must appear as a parameter in the
TypeLhs on the left hand side, and no type variable may be listed more than
once as a parameter on the left hand side.

In Habit, type synonym definitions are really just syntactic sugar for a special
form of type function definition. In particular, a type synonym declaration:

type T p1 ... pn = t

is equivalent to the following combination of a class and instance declaration
(for some fresh variable ):

class T p1 ... pn = a

instance T p1 ... pn = t

else T p1 ... pn = a fails -- prevents other instances for T

where a is a fresh type variable. Some of the restrictions on type synonym
definitions in Haskell are also implied by this formulation. For example:

• No partial applications: Because T is defined as a type function with n+1
arguments, it is not valid to use T in a type expression with fewer than n
arguments. (See Section 3.3.5 for more details.)

• No recursion: Recursive type synonym definitions are not valid. Techni-
cally speaking, a recursive definition such as the following:

type Stream = Pair Unsigned Stream

could be expanded using the encoding described previously to obtain the
following valid code:

class Stream = s

instance Stream = (Pair Unsigned Stream)

else Stream = s fails

Expanding the use of the type function Stream on the right hand side of
the instance declaration, however, we can see that this is equivalent to:

instance Stream (Pair Unsigned s) if Stream s

else Stream s fails

which does not define any valid instances.
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3.6.7 Datatype Declarations

As in Haskell, datatype definitions, beginning with the keyword data, are used
to introduce new algebraic datatypes in a Habit program. Each definition spec-
ifies a name for the new type, a sequence of parameters, a collection of zero or
more constructor function definitions, and an optional list of classes. The syn-
tax for datatype definitions is described by the following grammar:

DataDecl = data TypeLhs -- name and parameters

Opt("=" Sep(DataCon, "|")) -- constructors

Opt(deriving DeriveList) -- deriving clause

DataCon = Type Conop Type -- infix syntax

| PreDataCon

PreDataCon = Con -- prefix syntax

| PreDataCon AType

| "(" DataCon ")"

DeriveList = Con -- deriving a single class

| "(" Sep(Con, ",") ")" -- or a list of classes

The optional deriving clause of a data definition specifies a list of type class
names and indicates that the compiler is expected to generate instances of those
classes for the new datatype. The use of deriving is limited to certain built-in
classes, and is subject to restrictions on the form of the data declaration.

• Instances of Eq, and Ord can be derived for any type so long as each of
the component types is an instance of the corresponding class. This may
result in a derived instance with a context that captures constraints on
the parameters of the datatype.

• Instances of Bounded, Num, BitManip, Boolean, and Shift can be derived
for any type that has a single constructor function with a single argu-
ment that is an instance of the corresponding class. In these cases, the
datatype introduces a type that is isomorphic to an existing type and the
deriving mechanism simply lifts the corresponding class structure to the
new datatype.

• Instances of Monad can be derived for datatypes that have at least one
parameter and exactly one constructor. In addition, the constructor can
have only one field, which must be a type of the form m a where a is the
last (i.e., rightmost) parameter of the datatype, and m is a type expression,
not involving a, that is an instance of the Monad class. In this case, the new
datatype is isomorphic to m a and the derived monad structure will be
inherited directly from m.

• Instances of Pointed can be derived to specify that a pointed semantics
should be used for the new type. This is necessary to allow the definition
of general recursive functions over values of the new type.
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3.6.8 Bitdata Type Declarations

Bitdata definitions are used to introduce names for new bitdata types, allowing
fine-control over the bit-level representation of values as may be necessary to
match externally specified hardware or platform-oriented data structures [3, 4].
The syntax for bitdata definitions is described by the following grammar:

BitdataDecl = bitdata Conid -- name (no parameters)

Opt(/ Type) -- width specification

Opt("=" Sep(BitdataCon, "|"))-- constructors

Opt(deriving DeriveList) -- deriving clause

BitdataCon = Con [ Sep(BitdataField, "|") ]-- bitdata constructor

BitdataField = Varid Opt("=" Expr) :: TApp -- labeled field

| Expr -- tag bits

Bitdata definitions are similar to data definitions (Section 3.6.7) because they
introduce a new type name (the Conid that appears after the bitdata keyword)
as well as a collection of constructor names (the Con symbols at the front of each
BitdataCon). However, there are also some important differences:

• Parameters are not permitted on the left hand side of a bitdata definition.

• The description of each constructor specifies a collection of zero or more
component fields (each of which has an associated name, type, and an op-
tional default value) as well as a concrete, bit-level layout for constructed
values. If extra tag bits are needed to distinguish between different con-
structors, then these must be written explicitly as (unlabeled) expressions
of type Bit N for some (uniquely determined) width N. The representa-
tion for values corresponding to a particular constructor is determined
by concatenating the values of the component fields and tag bits in the
order they appear in the definition from left to right (i.e., from most to
least significant bit). For example, the following definition indicates that
a PCI address is described by a sixteen bit value whose most significant
eight bits identify a particular hardware bus. The remaining bits specify a
five bit device id and, in the three least significant bits, a device function.

bitdata PCI = PCI [ bus :: Bit 8 | dev :: Bit 5 | fun :: Bit 3 ]

• No constructor layout can include a component, either directly or indi-
rectly, of the type that is being defined. For example, the following defi-
nitions break this restriction and hence are not valid.

bitdata U = X [ x :: U ] -- invalid

bitdata V = Y [ x :: W | B1 ] -- invalid
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• Each constructor has an associated width (which must be an instance of
the Width class) that is calculated as the sum of the widths of its compo-
nents, including data fields and tag bits. All of the constructors in a given
bitdata definition must have the same width, and this will be used as the
BitSize of the type that is being defined. If extra padding is required in
one or more constructors to satisfy this property, then it must be written
explicitly as part of the definition. In all cases, the BitSize of the each
bitdata type must be uniquely determined.

• The BitSize of a bitdata type may be specified explicitly by adding an
annotation of the form / n on the left hand side of the definition. The
symbol n here denotes an arbitrary type expression of kind nat whose
value can be determined at compile time. (As described in Section 3.6.9,
the same notation can be used to specify the width of a structure type;
in that case, however, the width specifies a number of bytes rather than
a number of bits.) If the declared width does not match the width that
can be inferred from the rest of the definition, then an error will be re-
ported. In particular, no attempt will be made to pad or truncate bit-level
representations automatically to match the declared width.

• An expression that is used to specify tag bits does not require an explicit
type annotation if the associated width can be inferred from the context
in which it appears. In the following examples, it is clear that the 0 value
in the definitions of R and S must be treated as a constant of type Bit 4

given the width annotation in the definition of R and the requirement that
all constructors have the same width in the definition of S. On the other
hand, the definition of T is not valid because the 0 and 1 literals can be
interpreted as having many different widths, and hence the width of T is
not uniquely determined.

bitdata R/8 = A [ x :: Bit 4 | 0 ] -- valid, BitSize R = 8

bitdata S = B [ 0 ] | C [ B1111 ] -- valid, BitSize S = 4

bitdata T = D [ 0 ] | E [ 1 ] -- invalid, BitSize T = ?

• The assumptions of no junk and no confusion for algebraic datatypes
are not guaranteed for bitdata types [4]. In particular, this means that
there may be bit patterns of the given width that cannot be produced
using only the constructors of the bitdata type (these are the so-called
junk values), and there may be bit patterns that match multiple patterns,
even when the constructors are distinct (this is the source of the so-called
confusion). Definitions with either junk or confusion are valid in Habit
programs, although a compiler will typically provide an option to re-
quest the generation of appropriate warning diagnostics when such defi-
nitions are encountered. In general, however, programmers are expected
to tackle issues arising from the presence of junk or confusion directly.
For example, it is possible to deal with junk by using wildcard patterns
or by using the isJunk operator, and it is possible to deal with confusion
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by selecting an appropriate ordering of constructors and alternatives in a
definition that uses pattern matching.

Bitdata Construction. The basic notation for constructing a bitdata value,
described previously in Section 3.4.1, reflects the syntax of a corresponding
BitdataCon except that the fields may be listed in any order and that fields with
a specified default do not need to be mentioned at all. Tag bits are not required
(or permitted) because they are already implied by the choice of a particular
constructor name. The following code, for example, defines a bitdata type,
Perms, that is three bits wide and represents a set of Unix-style read, write, and
execute permissions. Because the r bit appears first in the definition, it will

bitdata Perms/3 = Perms [ r=B0, w=B0, x=B0 :: Bit 1 ]

nilPerms :: Perms

nilPerms = Perms [ r=B0 | w=B0 | x=B0 ]

The definition of nilPerms specifies a particular value of the Perms type in which
all three bits are set to zero. However, because the definition of Perms already
specifies B0 as the default value for each of the three components, any of the
following alternative definitions for nilPerms would have the same effect:

nilPerms = Perms [ x=B0 | r=B0 | w=B0 ] -- reorders fields

nilPerms = Perms [ w=B0 | x=B0 ] -- omits the r field

nilPerms = Perms [ r=B0 ] -- omits the w & x fields

nilPerms = Perms [ ] -- omits all fields

nilPerms = Perms -- omits field list

Note that the last of these examples omits the field list altogether. This is per-
mitted only for bitdata constructors whose layout specifies a default value for
every field (which, as a special case, includes constructors with no data fields,
and whose layout contains only tag bits).

Bitdata Constructor Types. For each constructor C of a bitdata type T, there
is an associated type written T.C whose values are the subset of bit patterns
in T that can be produced using the constructor C. Values of type T.C can be
obtained by pattern matching against values of type T and can be converted
back into values of type T by applying the constructor function C, which is
treated as a function of type T.C -> C.

The compiler generates instances of Select (see Section 4.3) to define each of
these component types and to provide operations for selecting the values of
the fields associated with each constructor. The compiler will also generates
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instances of Update for each bitdata field. To illustrate how this works in prac-
tice, consider the following bitdata definition.

bitdata T = X [ B1 | x :: Bit 3 | y :: Bit 4 ]

| Y [ B0 | x :: Bit 7 ]

By considering the lists of constructors, and the list of field names in each struc-
ture, the compiler can generate the following collection of primitive instances:

instance T.X = _ -- Component types of T

else T.Y = _

else Select T f = t fails

instance T.X.x = Bit 3 -- Selectors for fields of T.X

else T.X.y = Bit 4

else Select (T.X) f = t fails

instance Update T.X #.x -- Update functions for fields of T.X

else Update T.X #.y

else Update T.X t fails

instance T.Y.x = Bit 7 -- Selectors for fields of T.Y

else Select (T.Y) f = t fails

instance Update T.Y #.x -- Update functions for fields of T.Y

else Update T.Y t fails

These definitions are sufficient to enable the use of intuitive dot and update
notation for working with values of the T type. Indeed, many programmers
will be able to work with bitdata types like this, as in the following examples,
without needing to understand all the details of the associated instances.

sumT :: T -> Bit 7 -- use dot notation to select field values

sumT (X r) = (0 :# r.x) + (0 :# r.y)

sumT (Y r) = r.x

incT :: T -> T -- use update to increment or set fields

incT (X r) = X r[x = r.x+1]

incT (Y r) = Y r[x = 0]

Single Constructor Bitdata Types. In the special case of a bitdata type, T,
with only a single constructor, C, the compiler will replicate the instances that it
produces for T.C so that the dot and update notations can be used directly with
values of type T, avoiding the need for an initial match against the C constructor.
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For the PCI type defined previously, for example, the compiler will generate the
following instances:

instance PCI.PCI = _ -- PCI has only one constructor

else PCI.bus = Bit 8 -- Selectors for fields of PCI

else PCI.dev = Bit 5

else PCI.dev = Bit 3

else Select PCI f = t fails

instance Update PCI #.bus -- Update functions for fields of PCI

else Update PCI #.dev

else Update PCI #.fun

else Update PCI f fails

instance PCI.PCI.bus = Bit 8 -- Selectors for fields of PCI.PCI

else PCI.PCI.dev = Bit 5

else PCI.PCI.dev = Bit 3

else Select (PCI.PCI) f = t fails

instance Update PCI.PCI #.bus -- Update functions for fields of PCI.PCI

else Update PCI.PCI #.dev

else Update PCI.PCI #.fun

else Update PCI.PCI f fails

As a result, given an expression addr of type PCI, we can obtain the corre-
sponding bus, device, and function numbers using the expressions addr.bus,
addr.dev, and addr.fun. Definitions for component types (in this case, PCI.PCI
in the third and fourth instance chains above) are retained for consistency, al-
though we expect that they are unlikely to be used very much in practice. The
following definitions show some simple examples that use selection and up-
dates involving values of the single constructor PCI type:

onZeroBus :: PCI -> Bool

onZeroBus addr = addr.bus == 0

incFun :: PCI -> PCI

incFun addr = addr[fun = addr.fun + 1]

Bitdata Deriving. As with datatype definitions, it is possible for a program-
mer to request automatic generation of derived instances of standard type
classes by attaching a deriving clause to the end of a bitdata definition. The
rules for deriving instances of Eq, Ord, Bounded, Num, BitManip, Boolean, Shift,
and Pointed, and are exactly the same as those for datatypes, as described in
Section 3.6.7, and, for bitdata types, they are also extended to requests for de-
rived instances of ToBits, and FromBits. Note however, that it is not permitted
(or possible) to derive an instance of Monad for a bitdata type.
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3.6.9 Structure Declarations

Structure declarations are used to name and describe the layout of memory ar-
eas that are constructed by combining a sequence of and individually labeled,
adjacent memory blocks into a single memory area. The syntax for structure
declarations is described by the following grammar:

StructDecl = struct Conid -- name (no parameters)

Opt(/ Type) -- size specification

[ Sep0(StructRegion, "|") ] -- structure regions

Opt(deriving DeriveList) -- deriving clause

StructRegion = Opt(Sep(StructField, ",") ::) Type -- list of fields

StructField = Id Opt(<- Expr) -- name & initializer

Each structure declaration introduces a new type-constant name of kind area,
which cannot be the same as the name of any other type constant (including
type classes, type functions, bitdata, or data names) because they share the
same namespace. Note that a structure declaration serves only to define a type;
separate area declarations (Section 3.6.10) must be used to reserve one or more
memory areas with the associated layout.

Structure Layout. Each structure type is organized as a collection of region
specifications, each of which has (at least) an associated type (which must have
kind area as well as an associated ByteSize instance). The resulting memory
layout will include one component of the specified type for each field that is
declared within the region. If a region is specified by a type without any fields,
then a single (inaccessible) block of memory corresponding to that type will be
allocated within the structure. A Habit compiler guarantees that the regions
and fields of a structure will be arranged in memory using the same left-to-
right/lower-to-higher address order in which they are listed in the declaration,
without inserting any padding. For example, the following structure describes
an area of memory that takes the same space as an Array 4 (Stored Unsigned),
with the x field at index 0, the y field at index 1, and the z field at index 3:

struct S [ x, y :: Stored Unsigned | Stored Unsigned

| z :: Stored Unsigned ]

Unlike an array, however, there is no way to access the index 2 component of
an S structure because it does not have any named fields.

Structure Size. For every declared structure type, the compiler will automat-
ically generate a corresonding ByteSize instance (see Section 4.14), summing
the sizes of its constituent regions to compute the structure size. Given the S

44



structure defined above, for example, with four Stored Unsigned components,
each of which takes (WordSize/8) bytes, the compiler will generate an instance
equivalent to the following:

instance ByteSize S = 4 * (WordSize/8)

A structure declaration can include an optional /n annotation, immediately
after the structure name, for some type expression n of kind nat, to document
the expected size of the structure. This behaves much like the width annotation
for bitdata declarations except that the size of a structure is measured in bytes,
while the width of a bitdata type is measured in bits. As in the case of bitdata,
an error will be reported if the inferred size of the structure does not match the
declared size n; no attempt will be made to pad or truncate a structure type
automatically to reach the specified size. For example, the previous definition
of structure S could be modified to include a size annotation as follows:

struct S/16 [ x, y :: Stored Unsigned | Stored Unsigned

| z :: Stored Unsigned ]

This definition will be accepted on a platform with WordSize = 32 (where four
words, each of which takes four bytes, can be stored in sixteen bytes), but it will
trigger an error if compiled for a machine with a different WordSize. Unportable
behavior like this may be considered undesirable in some circumstances, but
such details can be quite important in some systems code, and this mechanism
allows a programmer to document platform-specific assumptions and enables
violations of those assumptions to be detected at compile-time.

Recursion. The layout of a structure type S cannot include a region, either
directly or indirectly, of the same type that is being defined. This prohibits re-
cursive definitions like the following in which the layout of the structure being
defined is not completely specified (as in the examples Bad1, Bad2, and Bad3),
or else for which there is no valid layout (as in the example Bad4, requiring
ByteSize Bad4 = ByteSize Bad4 + (WordSize/8), which is clearly not possible).

struct Bad1 [ x :: Bad1 ] -- direct recursion

struct Bad2 [ x :: Bad3 ] -- mutual recursion

struct Bad3 [ x :: Bad2 ]

struct Bad4 [ x :: Bad2 | y :: Stored Unsigned ] -- impossible layout

Of course, the ByteSize of a stored reference does not depend on the type of the
region that it points to, so recursion through reference types is permitted:

struct Okay [ x :: Stored (Ref Okay) ] -- Stored Ref has fixed size
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Field Access. No field name may be used more than once within a single
structure, but the same field name may appear in multiple distinct structure
types (or in bitdata types) without ambiguity. For each declared structure, the
compiler generates a corresponding instance of Select (Section 4.3) to provide
functions for accessing the structure’s named components. For the example
structure given above, this instance declaration takes the following form:

instance (Ref S).x = Ref (Stored Unsigned) where ...

else (Ref S).y = Ref (Stored Unsigned) where ...

else (Ref S).z = Ref (Stored Unsigned) where ...

else Select (Ref S) f = t fails

Note that these definitions work with references rather than direct values. For
example, if r is a reference to a structure of type S, then r.y will produce a refer-
ence to a Stored Unsigned, and not the Unsigned value that might be held at that
address. In concrete terms, this means that selection of a component within a
structure is a pure operation, performing address arithmetic but no memory
access, which must instead be captured by a separate action (e.g., readRef r.y).
Note also that the final line in the preceding instance declaration rules out the
possibility of accessing any field other than the x, y, or z fields of an S structure
mentioned in the preceding clauses. This ensures that a compiler can report an
error if a programmer writes an expression of the form r.t, assuming that r is
an expression of type Ref S, because there is no t field in an S structure.

Field Update. Individual fields in a structure that is identified by a reference
r can be updated using statements like writeRef r.y e3. Update expressions,
such as r[y=e], do not make sense for structures (it is not possible to change
the address of a field within a structure), so the Habit compiler will also gen-
erate an instance of the following form for each declared structure type (see
Section 4.3 for details of the Update class):

instance Update (Ref S) f fails

Structure Initialization. As described in Section 4.15, proper initialization of
structures and other memory areas in Habit programs is important to guaran-
tee type correctness and well-defined behavior. Habit provides special syntax
as part of the grammar for AExpr (see Section 3.4.1) for writing structure ini-
tializers in the form Conid [ Sep(Id <- Expr, "|") ]. Each expression like this
identifies a particular structure type and specifies an initializer for each field in

3Note that writeRef r.y e is parsed as writeRef (r.y) e, following the grammar in Sec-
tion 3.4, and not as (writeRef r).(y e) as it would be in Haskell. This is because Habit treats the
period, (.), as a reserved symbol for describing selection and not as an infix composition operator
or as special syntax for working with modules.
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that structure. The fields may be listed in any order, but repetition is not per-
mitted, and only field names that are defined as part of the named structure are
allowed. It is not necessary (although it is permitted) to include an entry for
a field when an initializer has been specified as part of the structure definition
(see the SField nonterminal in the earlier grammar) or if a default initializer
is available as an instance of Initable. An initializer specified in a StructInit

takes priority over an initializer specified in a StructDecl, which, in turn, takes
priority over a default initializer specified in an instance of Initable. It is an
error if this process fails to specify an initializer for any field in the structure.

The following examples show four initializers (i.e., values of type Init S) for
the S structure that was declared previously:

init1 = S[ x <- initStored 0 | y <- initStored 1 | z <- initStored 2 ]

init2 = S[ z <- initStored 2 | x <- initStored 0 | y <- initStored 1 ]

init3 = S[ x <- 0 | y <- 1 | z <- 2 ]

init4 = S[ y <- 1 | z <- 2 ]

Although they look different, each of these initializers has the same overall ef-
fect. The mapping between field names and initializers in examples init1 and
init2 is the same, even though the fields are listed in a different order. The
init3 example achieves the same result, relying on the overloading of numeric
literals as initializers. The init4 example takes this a step further by omitting
an explicit initializer for the x field and relying instead on the initNull initial-
izer that will be used as the default in this case.

Derived Initializers. If all of the field types in a given structure are instances
of NullInit, meaning that they can all be null-initialized, then the structure it-
self can be treated as an NullInit instance by including that class name in the
deriving portion of a structure declaration. Conversely, if NullInit is not men-
tioned in the deriving clause, then the compiler will generate a fails instance
of the class instead; this mechanism prevents the introduction of user-defined
null-initializers for structures, which could otherwise compromise type safety.
Instances of the NoInit class for structure types, corresponding to regions of
memory that do not require initialization, are handled in the same way by in-
cluding (or omitting) the name NoInit from the deriving list. Note that any
initializers specified as part of a structure declaration are ignored when gener-
ating a derived instances of either NullInit or NoInit.

As an example, because we did not include a deriving clause in the original
definition of the structure S, the compiler will generate two instances:

instance NullInit S fails -- S cannot be null initialized

instance NoInit S fails -- ... or left uninitialized
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If we modified the definition of S by appending deriving NullInit, however,
then the compiler would generate a different pair of instances:

instance NullInit S -- S can be null-initialized

instance NoInit S fails -- ... but not left uninitialized

Note that the compiler will report an error if the classes listed in a deriving

clause cannot be applied to all of the structure fields. For example, it would be
an error to add deriving (NullInit, NoInit) to the definition of the Okay struc-
ture given previously because stored references must be properly initialized
with a valid pointer, and cannot be either null-initialized or left uninitialized.

If the deriving clause in a structure declaration includes Initable, then the
compiler will attempt to generate a default initializer for the structure as an
instance of the Initable class using the initializers that are specified for each
field. Given the following declaration, for example, the compiler will generate
a default initializer for Point structures that sets both the x and y components
of the structure to 0:

struct Point [ x <- 0, y <- 0 :: Stored Unsigned ] deriving Initable

It is also possible to use deriving Initable if the structure declaration does not
include explicit initializers for all of the fields, provided that default initializers
(i.e., other instances of Initable) are available in those cases. As a result, the
preceding definition of Point would still be accepted if we omitted the two <- 0

clauses because there is a default (null-)initializer for Stored Unsigned values.

An explicit Initable instance can be used in cases where either null- or no-
initialization is required as the default for a particular structure type. For ex-
ample, we could make null-initialization the default for the S structure type de-
fined previously by adding deriving NullInit to the original declaration and
then adding the following Initable instance:

instance Initable S where initialize = nullInit

Providing an explicit Initable instance is also appropriate, of course, if some
other default initialization semantics is required.

3.6.10 Area Declarations

Area declarations are used to define regions of memory conforming to speci-
fied layout and alignment constraints. In essence, this provides a mechanism
for defining static, memory-based data structures, including simple global vari-
ables, structures, and arrays. Note, however, that there are some significant
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restrictions on the use of areas defined in this way because they are described
in terms of the types of kind area, and they cannot be used to store arbitrary
values of types with kind *. In particular, there is no way to store a general
function in a memory area.

The syntax of area declarations is a variant of the notation for type signature
declarations except that it begins with the area keyword, and includes extra
syntax for specifying initializers:

AreaDecl = area Sep(AreaVar, ",") -- area names and initializers

:: Type -- area type

Opt(where decls) -- local definitions

AreaVar = Var Opt(<- Expr) -- area name and initializer

The type portion of an area declaration should be equivalent to a type of the
form ARef L A, specifying both an alignment, L, and an area type, A, that is part
of a valid instance for ByteSize. A Habit compiler can then determine appro-
priate locations for the declared memory areas subject to these constraints, tak-
ing account of platform specific details, and avoiding conflicts with any other
memory areas that are being used either for code or for data. Habit programs
can access these regions of memory using the variables listed in the area decla-
ration as references of the declared type.

The syntax for area declarations also allows the specification of an initializer
expression, introduced by an <- symbol, for each named area. The initializer
expression can be omitted if a default is available (i.e., if the area type, A, is an
instance of Initable). For example, the following declaration:

area r1 <- init1, r2 <- init2, r3 :: Ref A

can also be written as three separate area declarations:

area r1 <- init1 :: Ref A

area r2 <- init2 :: Ref A

area r3 :: Ref A

Each of these options introduces three constants named r1, r2, and r3 with type
Ref A at the top-level of the program. Of course, these declarations are only
acceptable if init1 and init2 are valid initializers for A (i.e., if these expressions
have type Init A), and if there is a default initializer for areas of type A (i.e.,
an instance of Initable A) to ensure that all three areas have a well-defined
initialization semantics.

The optional where clause at the end of an area declaration provides an oppor-
tunity for including local definitions that scope across all of the area initializers
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in the declaration. This can be used for defining complex initializer expressions
without introducing new symbols at the top-level, as in the following example,
which shows how an array can be initialized so that each stored Unsigned con-
tains the square of its index:

area squares <- initArray square :: Ref (Array 10 (Stored Unsigned))

where square i = let n = unsigned i in initStored (n * n)

As a final note, we mention that future versions of Habit are expected to extend
the syntax for area declarations with mechanisms for specifying memory area
placement. This may be useful, for example, to specify locations within certain
portions of the address space, or even at specific addresses.

4 Standard Environment

A programmer’s view of a language is determined not only by details of the
language syntax (our focus in the previous section) but also by the built-in
types and functions that it offers; the latter is the main topic of this section.

The standard environment (i.e., the standard prelude or standard libraries) for
Habit programs is collection of classes, type functions, types and operations
that can be used in any Habit program. Many of the components of the stan-
dard environment have been mentioned briefly in the preceding text (see, for
example, the tables of standard types, classes, and type functions in Figures 1,
2, and 3, respectively). In this section, we describe each of these in more detail,
including information about standard operations. For conciseness, however,
and to avoid over-specification, we focus on presenting an informal signature
for the standard environment, eliding some of the implementation-level details
that would have to be addressed in a practical system. In particular, we often
use syntax like the following to document the details of built-in type construc-
tors and operations, providing the appropriate kind or type information:

primitive type Con :: Kind

primitive Var :: SigType

We also use primitive as a prefix for some class and type function declarations
to distinguish classes that are built-in to the system (i.e., that do not admit user-
defined instances) from those that do allow user-defined instances, subject to
the normal rules. Also, in some cases, we write instances for type functions
using an underscore in place of the result type:

instance LE Signed = _ -- memory area holding little-endian

-- representation of a Signed value
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The intention here is to signal that there is no way to refer to the result type
directly by name; the only way that we can write a range type like this explicitly
as part of a Habit program is by using the functional notation and writing it as
LE Signed. Some readers may prefer to think of _ here as a placeholder for
some (potentially implementation-defined) primitive type whose name is not
exported from the standard prelude.

Note that neither of the notations mentioned here—either using primitive or
underscores in the range of a type function—is valid Habit syntax; these are
just notations that we use here for the purposes of documentation.

4.1 Basic Types

Function types in Habit are constructed using the symbol ->, which is typically
written as a right associative, infix operator:

infixr type 5 ->

primitive type (->) :: * -> * -> *

The Bool type, with constructors False and True, is defined as follows:

bitdata Bool = False [B0] | True [B1]

deriving (Eq, Ord, Bounded, ToBits, FromBits)

Because Habit is a call-by-value language, we need to provide special treat-
ment for the familiar (&&) and (||) operators to obtain the expected lazy/short-
circuit semantics. Specifically, we parse and type check these two symbols as
infix operators using the following fixities and types:

infixr 3 &&

infixr 2 ||

(&&), (||) :: Bool -> Bool -> Bool

but we interpret calls to these functions via macro-expansion (treating partial
applications as syntax errors) using:

(e1 && e2) = if e1 then e2 else False

(e1 || e2) = if e1 then True else e2

The unit type has only one value and is defined as follows:

data Unit = Unit

deriving (Eq, Ord)
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For convenience, and because of its familiarity to Haskell programmers, we
also use the notation () for both the unit type and its only value.

The Maybe type is most commonly used as the return type of a function that
might fail if the inputs do not satisfy some appropriate condition. A success-
ful call is represented by a result of the form Just x, while a result of Nothing
indicates failure:

data Maybe t = Nothing | Just t

deriving (Eq, Ord)

4.2 Type Level Numbers

Type-level numbers, which are just types of kind nat, are used in the standard
environment to describe, among other things, bit vector widths, alignments
and sizes of memory areas, and limits on valid array indices. As mentioned
in Section 3.3.5, we use a small collection of type functions to describe basic
arithmetic operations or constraints on type-level numbers, most of which are
written using infix notation with the following associativities and precedences:

infixl type 6 +, -

infixl type 7 *, /

infixl type 8 ^

infix type 4 <=, <

The type functions for addition and multiplication are defined as follows (note
that we use prefix syntax here to match the grammar for class declarations,
but note also that predicates like (+) m n p can (and usually are) written in the
form m + n = p when they appear as part of a type signature.):

primitive class (+) (m :: nat) (n :: nat) (p :: nat)

| m n -> p, m p -> n, n p -> m

primitive class (*) (m :: nat) (n :: nat) (p :: nat)

| m n -> p

Note that there are three functional dependencies on the addition predicate:
if any two of the types in m + n = p is known, then the third is uniquely de-
termined. This property does not hold for multiplication—the value for m in
m * 0 = 0 is not uniquely determined, even though the second and third argu-
ments of the predicate are known—and so there is only one functional depen-
dency in this case.

Details about the instances of these two classes are built-in to the Habit com-
piler, including general rules as well as an infinite set of basic arithmetic facts,
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like the following, which are effectively generated on demand during type
checking:

instance 0 + n = n

instance n + 0 = n

instance 0 * n = 0

instance n * 0 = 0

instance 1 * n = n

instance n * 1 = n

instance 1 + 1 = 2

instance 2 + 1 = 3

...

instance n + 1 = 0 fails

...

instance 1 * 2 = 2

instance 2 * 2 = 4

...

instance n * 2 = 3 fails

...

Axioms like these, together with the declared functional dependencies, are suf-
ficient to allow a Habit compiler to simplify a predicate like n + 1 = 3 by uni-
fying n with 2, and to recognize that predicates like n + 1 = 0 and n * 2 = 3

have no solutions at all, in which case the compiler can report an immediate
error diagnostic.

Predicates for subtraction and comparison of type-level numbers can be de-
fined in terms of addition4):

class (-) (m :: nat) (n :: nat) (p :: nat)

| m n -> p, m p -> n, n p -> m

instance (x - y = z) if z + y = x

else (x - y = z) fails

class (<=) (x :: nat) (y :: nat)

instance x <= x+n -- equivalent to (x + n = y => x < y)

else x <= y fails

class (<) (x :: nat) (y :: nat)

instance (x < y) if (x + 1 <= y)

else x < y fails

4There is no formal requirement for a Habit compiler to implement these operations in this way,
however. Indeed, it might be preferable to build them in to the Habit compiler like addition and
multiplication in the interests of obtaining better error diagnostics
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In a similar way, we can define division on type-level numbers in terms of
multiplication.

class (/) (m :: nat) (n :: nat) (p :: nat)

| m n -> p, n p -> m -- note extra fundep

instance (m / 0 = n) fails

else (m / n = p) if p * n = m, 0 < n

else (m / n = p) fails

Note that the second functional dependency for division is valid because we
explicitly exclude the possibility of division by zero.

There are two additional primitive type functions on type-level numbers that
provide a means for computing powers and greatest common divisors (writing
GCD m n = p if p is the greatest common divisor of both m and n). The definitions
of these classes are as follows:

primitive class (^) (m :: nat) (n :: nat) (p :: nat)

| m n -> p, m p -> n

primitive class GCD (m :: nat) (n :: nat) (p :: nat)

| m n -> p

Again, instance rules of the form illustrated below can be generated on demand
by a Habit compiler to define a formal interpretation of these two classes:

instance 2^0 = 1

instance 2^1 = 2

instance 2^n = 3 fails

...

instance 2^12 = 4K

...

instance GCD 1 n = n

instance GCD n 1 = n

instance GCD 2 3 = 1

instance GCD 6 10 = 2

...

Of course, these rules, and their combination with functional dependency in-
formation, fall far short of providing a complete algorithm for deciding satisfi-
ability or for solving arbitrary arithmetic formulas, but they are actually quite
effective in many of the simple cases that occur in systems programming.

54



4.3 Dot Notation: the Select and Update Classes

The syntax of Habit allows components of bitdata and structures to be accessed
using dot notation: the x component of a value e is accessed by writing e.x. In
this section, we describe the features of the standard environment that support
use of dot notation in both types and expressions as well as the e[x=e’] update
syntax in expressions. These details are likely to be of most interest to pro-
grammers who are building high-level library code or investigating internals
of Habit; they are not expected to be used heavily in application code.

Label Types and Values. As mentioned in Section 3.3.1, Habit includes a
kind, lab, whose elements represent field labels. More specifically, for each
identifier, which could be either a Varid like x or a Conid like X, there are corre-
sponding types, written #.x and #.X, of kind lab. Using a kind, lab, allows us
to separate types representing labels from types of kind * like Bool or Unsigned
that do not. To make a connection between label types and values, however,
the Habit type system includes the following type constructor as a primitive:

primitive type Lab :: lab -> *

In particular, we will interpret each of the resulting Lab l types as a singleton,
and write #.x for the unique label value in the the type Lab #.x.

Selection. The primary role of a field label is to identify a component within
a (typically) larger data structure. We will use expressions select r l to denote
the value of the component of r that is associated with the label value l. This
only makes sense for certain combinations of r and l, which suggests that the
type of select will involve some form of overloading. It is also reasonable
to expect that different combinations of inputs will result in different types of
output. These observations are reflected in the following class definition:

class Select (r::*) (f::lab) = (t::*) where

select :: r -> Lab f -> t

Thanks to the dependency, we can also use functional notation to rewrite the
type of select in the following form:

select :: r -> Lab f -> Select r f

This type confirms the intuition that taking the type of a selection from an
object gives the same result as selecting from the type of the object.
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In practice, we will often use the select function and the associated Select

type function with a specific label value, #.x that is known at compile-time.
Recognizing this common case, the syntax of Habit interprets any expression
of the form e.x as an abbreviation for select e #.x. and any type expression
r.x as an abbreviation for Select r #.x. In particular, if e has type r, then
e.x has type r.x, where the latter, thanks to the use of functional notation, is
actually an abbreviation for Select r #.x t => t.

The Habit compiler automatically generates instances of Select for bitdata types
(Section 3.6.8) and structure types (Section 3.6.9) so that the components of
these types can be accessed using dot notation. In principle, however, it is also
possible to define instances of Select for other types. The following example
illustrates this by defining a type Temperature with values that can be read in
either Fahrenheit or Celsius by using an appropriate projection:

data Temperature = Temp Signed

instance Temperature.celsius = Signed where

(Temp c).celsius = c

instance Temperature.fahrenheit = Signed where

(Temp c).fahrenheit = 32 + (c*9)/5

This code uses the dot notation abbreviations described previously, but the
same program can also be written directly in terms of select and Select:

instance Select Temperature #celsius = Signed where

select (Temp c) #celsius = c

instance Select Temperature #fahrenheit = Signed where

select (Temp c) #fahrenheit = 32 + (c*9)/5

A more compelling reason to use Select explicitly is to define generic opera-
tions that will work for any label type. For example, the following definition
allows us to select the value of a ‘field’ f from an arbitrary monadic computa-
tion, so long as the result that it produces has an f field:

class (Select r f t, Monad m) => Select (m r) f (m t) where

select c f = do r <- c; return (select r f)

In particular, this definition includes instances (m r).x = m (r.x) as a special
case for each identifier x.

Update. As mentioned in Section 3.4.1, in addition to the dot notation for
selecting components of an object, Habit also provides a notation, e1[x=e2]

for updating the values of those components. (More accurately, this is a pure
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operation, so the expression e1[x=e2] actually constructs a new value that is like
e1 except that the x field has been replaced with the value of e2.) Also like the
dot notation, the update syntax e1[x=e2] is implemented as syntactic sugar for
the expression update e1 #.x e2, which uses the update function that is defined
in the following class:

class Update (r::*) (f::lab) where

update :: r -> Lab f -> Select r f -> r

Updates involving multiple fields can be implemented using a nested sequence
of update calls, as in the following example:

e[x=e1|y=e2] = update (update e #.x e1) #.y e2

Once again, the compiler will automatically generate appropriate instances of
Update for each bitdata type (Section 3.6.8) and structure type (Section 3.6.9) in
a program. However, there is nothing to prevent a programmer from defining
other instances of Update for user-defined types where that seems appropriate.

4.4 Standard Classes

The Habit standard environment includes simplified versions of the most com-
mon type classes in Haskell for describing equality (class Eq), ordering (classes
Ord and Bounded), and basic arithmetic (class Num). In this section, we provide
the definitions of these classes, including the type signatures (and, where ap-
propriate, fixities) of associated class members. Details of specific instances
for these classes appear in subsequent sections as we discuss each of Habit’s
primitive types.

We start with the definition of the set of equality types, Eq, which also includes
the equality test operation, ==, as well as its logical complement, /=. A default
definition is provided for the latter, which is useful both as documentation and
because it means that a programmer need only supply a definition for == when
they define a new instance of the Eq class. As described previously, we also
include an explicit fails instance to exclude function types from Eq.

infix 4 ==, /=

class Eq t where

(==), (/=) :: t -> t -> Bool

x /= y = not (x == y) -- default definition

instance Eq (a -> b) fails
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Although programmers can, in principle, provide an arbitrary semantics for
the definition of equality on new, user-defined types, the intention is that ==

should always correspond strongly to a notion of structural equality, modulo
details of representation. Note also that all derived instances of Eq assume
structural equality.

The Ord class represents the set of types whose elements admit a total, struc-
tural ordering relation. An instance of Ord can be specified by providing defini-
tions for the < and <= ordering functions, and then default definitions are used
to provide implementations for the symmetric > and >= variants as well as op-
erations for computing the minimum and the maximum of a pair of values:

infix 4 <=, <, >, >=

class Ord t | Eq t where

(<), (<=), (>), (>=) :: t -> t -> Bool

min, max :: t -> t -> t

-- default definitions:

x > y = y < x

x >= y = y <= x

min x y = if x <= y then x else y

max x y = if y <= x then x else y

Note that Ord lists Eq as a superclass, so the ordering functions such as <= should
only be defined for equality types and should produce results that are consis-
tent with the underlying equality.

Like Haskell, Habit also provides a Bounded class for describing types that have
minimal and maximal elements:

class Bounded t | Ord t where

minBound, maxBound :: t

Support for basic arithmetic on numeric types is provided by the Num class,
which includes operations for addition, subtraction, multiplication, and unary
minus (the negate operator).

infixl 7 *

infixl 6 +, -

class Num t where

(+), (-), (*) :: t -> t -> t

negate :: t -> t

x - y = x + negate y -- default definition
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Even for types like Unsigned that do not include any negative elements, the
negate operator still makes sense as a function for computing additive inverses.
It is not actually necessary to include a definition of subtraction as part of an in-
stance of Num because a default implementation using only negate and addition
is provided. (However, it may be appropriate to include a specific definition in
cases where a more implementation is possible; for example, many machines
allow subtraction of word values using a single machine instruction.)

4.5 Numeric Literals

One detail of the Num class in Haskell that is conspicuously absent from the
Habit version of Num is the fromInteger function that is used to support the han-
dling of numeric literals in Haskell. One reason that we do not include the
same function here is that there is no built-in, arbitrary precision Integer type
in the Habit standard environment. A more compelling reason, however, is
that Habit uses a different approach for handling numeric literals that lever-
ages the type system to provide stronger coupling between types and values.

Specifically, any occurrence of a numeric (integer) literal, n, in Habit source
code is treated as the application of the fromLiteral function to a value of the
singleton type Nat n. These primitives are defined as follows:

primitive type Nat :: nat -> *

class NumLit n t where

fromLiteral :: Nat n -> t

For example, an occurrence of the literal 42 in the source of a Habit program
will behave initially (i.e., before considering the context in which it appears)
as a value of type NumLit 42 t => t. Now, by providing appropriate instance
declarations, a simple literal like this can be treated as having many different
types, subject to constraints imposed by the corresponding instances of the
NumLit class. For example, it makes sense to consider 42 as a value of type
Bit 6, but not as a value of type Bit 5 because the largest value of that type is
31. The following declaration (a preview from Section 4.8) captures a general
rule that allows numeric literals to be used as bit vector literals so long as the
bit vector width is large enough to represent the specified literal value:

instance NumLit n (Bit m) if Width m, (n < 2^m)

This provides a flexible and extensible mechanism for handling numeric lit-
erals. With simple variations, for example, it is possible to define a type that
allows only nonzero literals, a type in which only even literals are valid, or a
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type whose literals are always powers of two! In this way, the NumLit class pro-
vides a connection between the numeric literals that appear as values in Habit
source programs and the corresponding type-level numbers that can be used
to enforce data or system invariants as a result of type checking.

4.6 Division

Although operations like addition, subtraction, and multiplication are typi-
cally used more frequently in systems programming, there are also situations
where it is necessary to perform a division. But introducing a simple division
operator, div :: t -> t -> t, to support this functionality is problematic be-
cause it does not account for the possibility of an implicit attempt to divide by
zero, which, on many machines, triggers a hardware exception that will typi-
cally need to be trapped and handled in some manner by the operating system.

In Habit, we use types instead to ensure, at compile-time, that the second argu-
ment of a division will never be zero, this is accomplished by treating division
as an operation with type, div :: t -> NonZero t -> t. Here, NonZero t is a
special type that represents all nonzero values of type t. In fact NonZero is actu-
ally a type function with the following definition:

infixl 7 ‘quot‘, ‘rem‘, ‘div‘, ‘mod‘

class NonZero t = t’ | Num t, t -> t’ where

nonZero :: t -> Maybe (NonZero t)

div, mod, quot, rem :: t -> NonZero t -> t

A key detail here is that there are only two ways to construct values of type
NonZero t to use as a divisor. The first is to use the nonZero method, which will
fail (non-catastrophically) by returning Nothing if the input is zero. The second
is by writing a literal, and using types to check for a zero at compile time:

instance NumLit n (NonZero t) if NumLit n t, 0 < n

The overall effect is to ensure that every dividend has been checked before
attempting to perform a division, preventing the possibility of a divide by zero
exception. In the special case of division by a constant, however, the check is
performed at compile time, without run time overhead.

4.7 Index Types

Habit provides a family of types of the form Ix n each of which represents the
natural numbers from 0 up to but not including n. We refer to these as index
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types because their values can be used to give the index of a component in
a larger structure such as a bit vector (Section 4.8) or an array (Section 4.14).
Moreover, if we can be sure that the larger structure has (at least) n elements,
then we can use values of type Ix n to index into the structure efficiently and
safely without a run-time range check.

The following definitions introduce the Ix type constructor as well as a class,
Index, to specify which type-level numbers can be used as arguments to Ix5.

primitive type Ix :: nat -> *

class Index n | 0 < n where

incIx, decIx :: Ix n -> Maybe (Ix n)

maybeIx :: Unsigned -> Maybe (Ix n)

modIx :: Unsigned -> Ix n

(<=?) :: Unsigned -> Ix n -> Maybe (Ix n)

relaxIx :: (Index m, n < m) => Ix n -> Ix m

instance Index (2^n) if n < WordSize

-- implementation can use bit-oriented operations (e.g., masking)

else Index n if n < 2^WordSize

-- implementation uses modulo arithmetic

The incIx and decIx operations can be used to increment or decrement an index
value, returning either Nothing if the input is already at the limit of its range, or
else a value Just i for some new index value i. The maybeIx function works in
a similar way but takes an arbitrary Unsigned input, while modIx uses modulo
arithmetic to ensure a valid index. In practice, however, the checked compar-
ison primitive, <=?, is often most flexible in code that iterates over a sequence
of index values because it uses a comparison with some programmer-specified
upper bound to implement an appropriate range check. (The maybeIx operator,
for example, is really just a special case with maybeIx u = u <=? maxBound.)

Index types support the usual operations for equality and ordering. In addi-
tion, an instance of NumLit for index types allows numeric literals to be used as
index values, subject to a compile time range check. Note, however, that we do
not allow index arithmetic and hence there is no Num instance for index types:

instance Eq (Ix n) if Index n

instance Ord (Ix n) if Index n

instance Bounded (Ix n) if Index n

instance Num (Ix n) fails

instance NumLit i (Ix n) if Index n, i < n

5Technical note: These definitions are sufficient to ensure that a value of an index type will fit
within a single machine word. It is permitted for an implementation to provide more instances
of Index than this, but we do not require that because it seems likely that it would complicate a
typical implementation and unlikely that it would be useful in practice.
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4.8 Bit Vector Types

Habit provides a family of bit vector types. Specifically, a value of type Bit n

is a bit vector with n bits:

primitive type Bit :: nat -> *

As mentioned previously (Section 3.2), Habit provides special syntax for bit
literals, such as B0 :: Bit 1, B101 :: Bit 3, etc., as well as a primitive (Sec-
tion 3.3.5) for concatenating bit vectors:

primitive (:#) :: (Width m, Width n, Width p, m + n = p)

=> Bit m -> Bit n -> Bit p

The reverse operation, breaking a bit vector into two (or more) constituent
pieces, can be performed using bit patterns (Section 3.5).

Basic operations on bit vectors are provided by the following built-in instances:

instance Eq (Bit n) if Width n

instance Ord (Bit n) if Width n

instance Bounded (Bit n) if Width n

instance Num (Bit n) if Width n

instance NonZero (Bit n) = _ if Width n

instance NumLit n (Bit m) if Width m, n < 2^m

In particular, numeric literals for values of type Bit n are allowed only for lit-
erals that are less than 2n (i.e., literals that are representable in n bits).

The instances above include a Width n constraint that potentially restricts the
set of valid bit vector widths to which the class operations can be applied.

primitive class Width (n::Nat) | Index n

All values of n that are less than or equal to the width of a word on the under-
lying machine must be valid instances of Width, so the above operations can
be used on any bit vector that fits within a single machine word. A particular
implementation may provide additional instances of Width, but this is not re-
quired. Note also that every instance of Width is also required to be an instance
of Index; this is used in the BitManip class in Section 4.9 where index values are
used to reference individual bits within a bit vector.
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4.9 Bit-Level Representation Classes

For some programming tasks, it is necessary to inspect, and perhaps even ma-
nipulate bit-level representations of data. Habit reflects this with the definition
of a primitive type function and three type classes. The type function, called
BitSize, identifies the set of types t for which a bit-level representation has
been exposed, and specifies the associated bit vector width.

primitive class BitSize (t :: *) = (n :: nat) | t -> n

The definition of BitSize as a type function should make it clear that this mech-
anism is intended only for types that are represented by fixed-width bit vectors,
and not for higher-level aggregates that might require variable width represen-
tations or parsing of potentially unbounded bit streams.

The first two type classes, called ToBits and FromBits, provide functions for
inspecting the underlying bit representation of a given input value, and for
constructing values from a bit-level representation. It is necessary to separate
these two roles because there are some types where it is useful to have the func-
tionality of ToBits, but unsafe to provide the functionality of FromBits. It can be
useful to inspect the bit representation of a memory area reference, for exam-
ple, but we should not allow the construction of a reference from an arbitrary
bit vector because this would make it possible to create invalid references and
to compromise memory safety. The definitions of these classes are as follows:

primitive class ToBits t where

toBits :: t -> Bit (BitSize t)

primitive class FromBits t | ToBits t where

fromBits :: Bit (BitSize t) -> t

isJunk :: t -> Bool

Note that FromBits includes ToBits as a superclass; this can sometimes lead to
simpler types, and we have not yet encountered any examples where it us use-
ful to be able to construct values from a given bit-level representation without
also being able to inspect those representations.

Habit also provides a collection of operations for manipulating individual bits
within a bit vector, which we capture with a third class:

class BitManip t | FromBits t, Index (BitSize t) where

bit :: Ix (BitSize t) -> t

setBit, clearBit, flipBit :: t -> Ix (BitSize t) -> t

bitSize :: t -> Ix (BitSize t)

testBit :: t -> Ix (BitSize t) -> Bool

63



The intention here is that bit i returns a value of type t in which the ith bit
has been set; setBit x i, clearBit x i, and flipBit x i return a modified copy
of the value t with the ith bit set, cleared, or flipped, respectively; bitSize x

returns the index of the most significant bit in x; and testBit x i tests to see if
the ith bit of x is set.

Of course, the bit vector types from Section 4.8 provide prototypical instances
for each of the classes that we have described in this section. There are also
instances of these classes for index types, but only in those special cases where
the size of the index type is a power of two:

instance BitSize (Bit n) = n if Width n

instance ToBits (Bit n) if Width n

instance FromBits (Bit n) if Width n

instance BitManip (Bit n) if Width n

instance BitSize (Ix p) = n if Index p, 2^n = p

instance ToBits (Ix p) if Index p, 2^n = p -- OVERLY RESTRICTIVE

instance FromBits (Ix p) if Index p, 2^n = p

instance BitManip (Ix p) if Index p, 2^n = p

4.10 Boolean and Shift Classes

Strict versions of Boolean operations—including and, or, xor, and complement—
are meaningful on a range of different types including both Bool and Bit n

types, so we describe these operations in more general form using a type class
with appropriate instances:

infixl 7 .&. -- bitwise and

infixl 6 .^. -- bitwise exclusive or

infixl 5 .|. -- bitwise inclusive or

class Boolean t where

(.&.), (.|.), (.^.) :: t -> t -> t

not :: t -> t

instance Boolean Bool

instance Boolean (Bit n) if Width n

instance Boolean (Ix p) if Index p, 2^n = p

Note that we also include an instance of Boolean for index types of the form
Ix p, but only in the special case where p is a power of two.

Shift operations are not included in Boolean but are instead packaged in a sub-
class because they are not particularly useful for all Boolean types (such as Bool,
for example):
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infixl 8 shiftL, shiftR -- shift left (/2), shift right (*2)

class Shift t | Boolean t where

shiftL, shiftR :: t -> Unsigned -> t

instance Shift (Bit n) if Width n

instance Shift (Ix p) if Index p, 2^n = p

4.11 Words

The Unsigned and Signed primitive types represent unsigned and signed word
values, respectively, in the underlying machine’s natural word size. These
types can be used for general and efficient arithmetic in the absence of specific
size or representation requirements.

primitive type Unsigned :: *

primitive type Signed :: *

Both types are instances of the expected classes:

instance Eq Unsigned ; instance Eq Signed

instance Ord Unsigned ; instance Ord Signed

instance Num Unsigned ; instance Num Signed

instance NonZero Unsigned = _ ; instance NonZero Signed = _

instance Bounded Unsigned ; instance Bounded Signed

instance Boolean Unsigned ; instance Boolean Signed

instance Shift Unsigned ; instance Shift Signed

instance ToBits Unsigned ; instance ToBits Signed

instance FromBits Unsigned ; instance FromBits Signed

instance BitManip Unsigned ; instance BitManip Signed

The appropriate BitSize instances are:

instance BitSize Unsigned = WordSize

instance BitSize Signed = WordSize

The type WordSize used here is a primitive type-level number that is defined in
the standard environment:

primitive type WordSize :: nat -- architecture specific
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It is, of course, convenient to allow numeric literals to be interpreted as Unsigned
or Signed values.

instance NumLit i Unsigned if i < 2^WordSize

instance NumLit i Signed if i < 2^(WordSize - 1)

Habit also provides classes (ToUnsigned and ToSigned), with member functions
(unsigned and signed), to support conversion of word values, bit vectors and
index values into corresponding (Unsigned or Signed) word values:

class ToUnsigned t where

unsigned :: t -> Unsigned

instance ToUnsigned Unsigned

instance ToUnsigned Signed

instance ToUnsigned (Bit n) if Width n

instance ToUnsigned (Ix n) if Index n

class ToSigned t where

signed :: t -> Signed

instance ToSigned Unsigned

instance ToSigned Signed

instance ToSigned (Bit n) if Width n

instance ToSigned (Ix n) if Index n

The unsigned function converts values to Unsigned words using zero extension
if the input has fewer than WordSize bits or truncation if the input has more
than WordSize bits. In a similar way, the signed function converts values to
Signed words using sign extension if the input has fewer than WordSize bits or
truncation if the input has more than WordSize bits. In practice, unsigned and
signed are likely to be implemented as identity functions, at least in common
cases, reflecting a change of type, but not a change of value.

4.12 Pointed Types

Many of the types that arise naturally in systems programming do not fit the
model of pointed types in Haskell where every type, without exception, has
a so-called bottom value representing failure to terminate in addition to any
other elements. The advantage of the Haskell approach is that the presence of
bottom elements is sufficient to guarantee that every recursive definition has a
(least) solution, which means that recursion can be used freely within Haskell
programs. A downside, however, is that the extra bottom elements result in
clutter that complicates reasoning and reduces the precision of the type system.
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Habit supports the use of pointed types as in Haskell, but also allows the defi-
nition and used of unpointed types. The latter do not include a bottom element,
and hence it is not possible to define values of an unpointed type using gen-
eral recursion. As a result, however, it is possible to obtain strong termination
guarantees for programs that manipulate only unpointed types.

The basic approach that is used to support combinations of both pointed and
unpointed types together in Habit was first suggested by Launchbury and Pa-
terson [12]. In particular, it relies on the use of a type class that includes all
of the Pointed types and provides the foundations that are necessary to sup-
port recursion (captured here by operations that return the bottom value and
an associated fixpoint combinator, fix, for each such type):

primitive class Pointed t where

bottom :: t

fix :: (t -> t) -> t

The following instance declaration provides an important component of the
definition of the Pointed class, indicating that a function type with a pointed
range type is itself pointed:

instance Pointed (t -> t’) if Pointed t’

Instances of the Pointed class for other types are generated by the compiler as
necessary. In particular, types defined as bitdata are not included (the compiler
can generate appropriate instance... fails declarations for these cases), while
types defined using data are included only if the Pointed class is listed explicitly
as part of the deriving clause. (Note that pointedness constraints are required
for some forms of datatype definition to ensure that the definition is valid;
in these cases, it is an error for the programmer to omit the Pointed from the
deriving clause.)

Because Habit is a call-by-value language, it is not possible to define a function
f :: P -> U where P is pointed and U is unpointed. If such a function could be
defined, then it could be applied to the bottom value of type P, producing a
bottom value of type U as a result, which contradicts the assumption that U is
unpointed. The Habit type system enforces this restriction by requiring that a
predicate of the form t =<= u holds for every function type t -> u that is used
in a program. This predicate, which captures an informal intuition that u is at
least as pointed as t, can be defined as follows:

class (a :: *) =<= (b :: *)

instance a =<= b fails if Pointed a, Pointed b fails

else a =<= b
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For the purposes of simplifying constraints of the form t =<= u, it is useful
to add some extra rules that are consistent with the above definition, but not
necessarily easy to extract and apply automatically:

a =<= (b -> c) <=> a =<= c -- function space on right

(a -> b) =<= c <=> b =<= c -- function space on left

To reduce clutter, constraints of the form t =<= u can be omitted from Habit
type signatures if they are implied by the structure of the rest of the type.
For example, the function \x y -> x has type a -> b -> a, which includes two
function arrows, and hence requires two =<= constraints to ensure validity:

(a =<= (b -> a), b =<= a) => a -> b -> a

Using the rules above, this can be simplified to either of the following forms:

(a =<= a, b =<= a) => a -> b -> a -- function space on right

(b =<= a) => a -> b -> a -- reflexivity

In a Habit program, however, we can use the following simple form, leaving
out the constraints altogether because they are implied by the form of the type:

const :: a -> b -> a

const = \x y -> x

It is important to note, however, that this is just a syntactic abbreviation (i.e., a
matter of presentation). Even though it may not be not written down explicitly,
the b =<= a constraint is still part of the formal type for const, and an expression
of the form const u p will trigger a type error if u has an pointed type while p

is unpointed.

An alternative way to ensure validity of the type signature for const would be
to add a pointedness constraint, as in:

const :: Pointed a => a -> b -> a

const = \x y -> x

In this case, no additional =<= constraints are required (because they are im-
plied by the Pointed a constraint), but the resulting version of const is less
general because it can only be used in cases where a is a pointed type.

The treatment of pointed and unpointed types in Habit remains as one of the
most unusual aspects of the language design and as a topic that will be de-
scribed in more detail in future versions of this report.
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4.13 Monads

As described in Section 3.4.1, Habit provides special syntactic support for pro-
gramming with monads. This allows the definition and use of functions that
work over a range of different monads so long as they have all been defined as
instances of the following class:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

Instances of the Monad class are generally expected (but not required) to satisfy
the standard monad laws:

return e >>= f = f e -- left identity

e >>= return = e -- right identity

(e >>= f) >>= g = e >>= (\x -> f x >>= g) -- associative

The operators of the Monad class are used to provide a semantics for do notata-
tion expressions by repeated use of the following rewrites:

do { x <- e; s } = e >>= \x -> do { s }

do { e; s } = e >>= \_ -> do { s }

do { let ds; s } = let ds in do { s }

do { e } = e

4.14 Memory Areas, References and Alignments

Habit provides direct support for manipulating memory-based data structures
using a combination of area and references types [2].

Area Types. An area type (i.e., a type of kind area) describes the layout of a
block of memory. Habit includes primitives for area types that can hold basic
values (such as Unsigned and Signed words) as well as primitives for defining
(statically-sized) arrays/tables. In addition, structure types (Section 3.3.2) can
be used to describe the layout of record-like blocks of memory whose indi-
vidual components that can be accessed by name. Memory areas cannot be
manipulated as first-class values because they have kind area rather than kind
*. Instead, memory areas are accessed and manipulated via references using
operations that make reads and writes to memory explicit.
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Reference Types. Reference types, whose values correspond to machine ad-
dresses, are used as pointers to specific regions of memory. (The necessary
storage space can be reserved using the area declarations described in Sec-
tion 3.6.10.) Reference types of the form ARef l a, for example, include a spec-
ification of memory layout, given by a type a of kind area, as well as an align-
ment, given by a type l of kind nat. The latter indicates that the associated
machine address must be a multiple of l. Alignment specifications are some-
times used to enforce hardware constraints (for example, to ensure positioning
of data on word, cache-line, or page boundaries). Alignments can also be used
to reduce the number of bits that are needed to store a reference. For example,
a 4K aligned reference in a 32 bit machine can be represented using only 20 bits;
there is no need to store the lower bits explicitly because every multiple of 4K
has zeros in its least significant 12 bits.

primitive type ARef :: nat -> area -> *

instance Eq (ARef l a) if Alignment l

instance BitSize (ARef l a) = WordSize - n if Alignment l, 2^n = l

instance ToBits (ARef l a) if Alignment l

instance FromBits (ARef l a) fails

The instances listed here show that references may be tested for equality using
Eq and converted to bit vectors using ToBits. The last line, however, is prob-
ably the most important part of this code because it ensures that the fromBits

function cannot be used to fake an invalid reference value from an arbitrary bit
vector; this restriction is essential, of course, to ensure memory safety.

A simpler reference type of the form Ref a can be used in cases where align-
ment is not important, in which case a default (minimal) alignment is assumed:

primitive type MinAlign :: nat

type Ref = ARef MinAlign

The MinAlign constant reflects the minimum valid alignment on the underlying
platform. For example, we might have MinAlign = 4 on machines that require
word alignment, or MinAlign = 1 on machines that allow arbitrary alignment.
There is also a class, Alignment, whose instances are the type-level numbers
corresponding to legal alignment values on the target platform:

primitive class Alignment (l :: nat)

Of course, MinAlign must be an instance of Alignment, but the details beyond
that are architecture specific. The following instances suggest some possibili-
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ties, and we hope to standardize on a specific choice that will be usable on a
broad range of platforms in future versions of this report:

instance Alignment (2^n) if Width n -- MinAlign = 1

instance Alignment (4*n) if (n > 0) -- MinAlign = 4

instance Alignment n if (n > 0) -- MinAlign = 1

Pointer Types. In addition to reference types like Ref a, whose values are
guaranteed to hold valid addresses to appropriately typed memory areas, Habit
also supports pointer types whose values are guaranteed either to be a valid
reference or else to be Null. As such, any program that works with a pointer
type must perform extra Null pointer checks to obtain valid references into
memory. As with references, pointer types come in two flavors, depending on
whether an explicit or a default alignment is required:

primitive type APtr :: nat -> area -> *

type Ptr = APtr MinAlign

instance Eq (APtr l a) if Alignment l

instance BitSize (APtr (2^n) a) = WordSize - n if Alignment l

instance ToBits (APtr l a) if Alignment l

instance FromBits (APtr l a) fails

From a programmer’s perspective, however, pointer types behave much as if
they were introduced by a datatype definition of the following form:

data APtr l a = Ref (ARef l a)

| Null

In particular, Habit programs can build pointer values using Null and Ref as
constructor functions, and they can use pattern matching over the same con-
structors to implement Null pointer tests.

Stored Data. Basic area types, LE t and BE t, are provided for types t with a
bit-level representation that takes some whole number of bytes, that is for types
that are instances of ToBits with BitSize t a multiple of eight. Area types of
the form BE t use big-endian representations (i.e., the most significant byte is
stored first/at the lowest address) while those of the form LE t use little-endian
representations (i.e., the least significant byte is stored first/at the lowest ad-
dress).

primitive class BE (t :: *) = (a :: area) | t -> a

instance BE t = _ if ToBits t, BitSize t = 8 * n
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primitive class LE (t :: *) = (a :: area) | t -> a

instance LE t = _ if ToBits t, BitSize t = 8 * n

As these (pseudo) declarations suggest, BE t and LE t are implemented as type
functions, mapping types t to appropriate (but unnamed) primitive area types.
The underlying names of these area types are not visible in user programs (i.e.,
they are not exported from the standard environment) so they can only be ref-
erenced indirectly using the names BE t and LE t.

For practical purposes, the distinction between BE t and LE t is only likely to
be significant in situations where the precise structure of a memory area is
required to match some external specification such as an operating system API
or a hardware data sheet. In other situations, it will normally be preferable to
use areas of type Stored t which use the native (and typically most efficient)
representation for the underlying platform. (In practice, Stored t is likely to be
a synonym for either BE t or LE t, but this is not guaranteed.)

primitive class Stored (t :: *) = (a :: area) | t -> a

instance Stored t = _ if ToBits t, BitSize t = 8 * n

Arrays and Padding. In addition to the primitive area types—LE t, BE t and
Stored t—and user defined structure types (Section 3.6.9), Habit also provides
support for memory based array or table structures. Specifically, the Array n a

and Pad n a types both describe a memory area that contains a contiguous
block of n component areas each with layout a. The difference between these
two types is that Habit does not provide any operations for accessing any part
of a Pad area, so a Pad n a type is useful only for describing padding. On the
other hand, the components of an Array n a area can be accessed using the the
array indexing operation, @@, which takes a reference to an array and an index
(guaranteed, as a value of type Ix n to be in the correct range) and returns a
reference to the corresponding component area:

primitive type Array :: nat -> area -> area

primitive type Pad :: nat -> area -> area

primitive (@@) :: (Index n) =>

ARef l (Array n a) ->

Ix n ->

ARef (GCD l (ByteSize a)) a

The return type of the @@ shown here is a little complicated because it includes
the arithmetic that is needed to compute the alignment of the resulting pointer.
As a special case, @@ can also be treated as a function of the simpler and more
intuitive type: Ref (Array n a) -> Ix n -> Ref a.
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Area Size. The type ByteSize a is an application of the following primitive
type function, which returns the number of bytes in an arbitrary memory area.

primitive class ByteSize (a :: area) (n :: nat) | a -> n

instance ByteSize (BE t) = BitSize t / 8

instance ByteSize (LE t) = BitSize t / 8

instance ByteSize (Stored t) = BitSize t / 8

instance ByteSize (Array n t) = n * ByteSize t

These instances cover the cases for primitive memory areas and arrays. Ad-
ditional instances are generated automatically for struct types in the obvious
way: the ByteSize of a struct type is just the sum of the ByteSize values of its
components.

Data Access. Values that are stored in memory areas are accessed via a small
set of monadic primitives that are captured by the following class declaration6:

class MemMonad m | Monad m where

memZero :: ARef l a -> m ()

memCopy :: ARef l a -> ARef l’ a -> m ()

readRef :: ARef l a -> m (ValIn a)

writeRef :: ARef l a -> ValIn a -> m ()

The memZero and memCopy operations are used to initialize or copy the contents
of one memory area to another area of the same type. The readRef and writeRef

operations are used to read and write the values stored in the referenced mem-
ory regions. The types of these operations use the ValIn type function to deter-
mine the type of value that is stored by a given area type:

primitive class ValIn a = t | a -> t

instance ValIn (BE t) = t

instance ValIn (LE t) = t

instance ValIn (Stored t) = t

Note that Habit only provides instances of ValIn for basic area types, so it is
not possible to read (or write) a complete array or struct area using a single
readRef (or writeRef) call.

6By defining a class of monads that support these operations instead of hardwiring them to a
fixed monad, we hope to avoid the feature creep that has occurred as ever more functionality (and
complexity) has been added to the IO monad in Haskell.
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4.15 Memory Area Initialization

Memory allocated by area declarations (Section 3.6.10) must, in general, be
properly initialized at startup time. Failing to initialize a Stored (Ix n) with an
appropriate index, or a Stored (Ref a) with a valid address, for example, could
compromise both type- and memory-safety guarantees for Habit programs.
But even in cases where it is not strictly required—such as when dealing with
a Stored Unsigned field—some form of initialization is still likely to be needed
for algorithmic purposes. Suitable initialization code could be included as part
of a main routine elsewhere in the code, but separating the definition of the area
and the code for initialization in this way is awkward and error-prone.

In this section, we describe the types, functions, and classes that are provided
in the standard environment to support the definition of initializers for mem-
ory areas. The resulting initializers can then be used within individual area
declarations to ensure valid and predictable initialization. The central idea is
to introduce an abstract type for initializers: a value of type Init a captures a
method for initializing a memory area of the type described by the a parameter:

primitive type Init :: area -> *

instance Pointed (Init a) fails

Initializers are pure values, but they correspond to methods that, when exe-
cuted, can write to memory, but not read or perform other side-effecting com-
putations. As a result, a collection of initializers, operating on disjoint memory
areas, can be executed in any order with no observable difference in semantics.

We describe Init as an abstract type because the implementation of Init a val-
ues is not exposed to the programmer. Instead, the range of initializers that
can be specified is limited by the set of operations that are provided by the
languge and its standard environment for constructing Init a values. The
Pointed (Init a) fails instance guarantees that the construction of initializ-
ers will terminate, but terminatation of the initializers themselves follows in-
dependently by a case analysis of the operations on the abstract type. Those op-
erations include the special syntax for structure initialization that is described
in Section 3.6.9, as well as a general primitive for initialization of arrays:

primitive initArray :: Index n => (Ix n -> Init a) -> Init (Array n a)

Note that initArray is a higher-order function; the argument—a function from
index values to initializers—allows us to specify a potentially different initial-
ization strategy for each array element.

The Habit standard environment also includes another higher-order function,
initSelf, for defining initializers on structures that use the address of the object
being initialized as an input to the initialization process:
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primitive initSelf :: (Ref a -> Init a) -> Init a

To illustrate this, consider the following simple structure that might be used to
implement a doubly-linked list or a union-find algorithm:

struct DLL [ prev, next :: Stored (Ref DLL) | val :: Stored Unsigned ]

Each node of a DLL structure contains a stored value as well as pointers to the
previous and next items in the list. Using initSelf, we can define an initializer
for DLL that sets prev and next to point to the object that is being initialized:

initDLL :: Unsigned -> Init DLL

initDLL v = initSelf (\self -> DLL [ prev <- initStored self

| next <- initStored self

| val <- initStored v ])

In the following subsections, we describe the primitives that support initializa-
tion of stored data (Section 4.15.1); the NullInit and NoInit classes that capture
common patterns for null- and no-initialization (in Sections 4.15.2 and 4.15.3,
respectively); and the Initable class that allows the definition of a default ini-
tializer for each memory area type (Section 4.15.4).

4.15.1 Initialization of Stored Data

Memory areas of the form Stored t (as well as the LE t and BE t variants) can
be initialized by specifying an appropriate initial value of type t, as described
by the following three primitives7:

initStored :: t -> Init (Stored t)

initLE :: t -> Init (LE t)

initBE :: t -> Init (BE t)

Because numeric literals in Habit are overloaded, they can also be used as ini-
tializers defined implicitly in terms of initStored via the following instance
(with very similar instances for LE and BE):

instance NumLit n (Init (Stored t)) if NumLit n t where

fromLiteral n = initStored (fromLiteral n)

7Written in the form shown here, the types of these primitives suggest that they are fully poly-
morphic in t. Note, however, that use of the Stored, LE, or BE type functions actually implies a
restriction to choices of t that are instances of the corresponding class. Indeed, these primitives
will typically be implemented as members of those type function classes.
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4.15.2 Null Initialization

A large class of memory areas can be initialized safely by setting their contents
to zero/null; the area types for which this is possible are captured as instances
of the NullInit class:

class NullInit a where

nullInit :: Init a

Mechanisms for enabling null-initialization of structure types are described in
Section 3.6.9, while null-initialization of an array is permitted whenever the
type of the elements in the array supports null-initialization:

instance NullInit (Array n a) if NullInit a where

nullInit = initArray (\i -> nullInit)

An area of padding, however, cannot be null-initialized because that would
require writing data into an inaccessible region of memory:

instance NullInit (Pad n a) fails

We can also null-initialize a range of Stored values, with special cases for pointer
and index types and a general case for stored values that can be represented by
a vector of zero bits (again, there are very similar instances for LE and BE):

instance NullInit (Stored (APtr l a)) if Alignment l where

nullInit = initStored Null

else NullInit (Stored (Ix n)) if n>0 where

nullInit = initStored 0

else NullInit (Stored t) if FromBits t where

nullInit = initStored (fromBits 0)

else NullInit (Stored t) fails

4.15.3 No Initialization

Some memory areas can be used immediately without any explicit initializa-
tion steps. This approach, which is referred to as no-initialization in Habit, is
available only in cases where type safety is assured, but it does not guarantee
that an area will contain useful or predictable values. As such, no-initialization
may be useful in special situations—for example, to support lazy initialization
of large arrays—but further initialization steps will typically still be required
elsewhere in the program before the memory is actually used to ensure correct
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algorithmic behavior. The area types that support no-initialization are cap-
tured as instances of the NoInit class:

class NoInit a where

noInit :: Init a

instance NoInit (Pad n a) if NoInit a

instance NoInit (Array n a) if NoInit a

instance NoInit (Stored t) if FromBits t

instance NoInit (LE t) if FromBits t

instance NoInit (BE t) if FromBits t

Note that the last three instances (for stored data) allow no-initialization only
for types that permit construction from an arbitrary bit-level representation.
In particular, this excludes reference, pointer, and index types (except, in the
latter case, when the number of valid index values is a power of two).

Structure types whose components can all be no-initialized can also be in-
cluded as instances of NoInit, as described in Section 3.6.9.

4.15.4 Default Initialization

Habit allows programmers to associate a default initialization strategy with
each memory area type by defining an instance of the Initable class:

class Initable a where

initialize :: Init a

The default initializers that are defined in this way are used for initializing
structure fields when no explicit initializer has been specified, or for handling
the declaration of a memory area that does not include an explicit initializer.
(Conversely, it is an error to declare a memory area with a type of the form
Ref L A for some area type A without specifying an explicit initializer unless A

has been declared as an instance of Initable.)

The selection of a default initialization strategy must be made carefully. Using
null-initialization as a default is likely to result in better predictability, while
no-initialization might result in better performance. There are also cases where
neither of those approaches is applicable, or where other, application-specific
behavior is required. The set of predefined instances of Initable in Habit is de-
scribed by the following declarations, using null-initialization for stored data
(with similar instances for LE and BE), element-wise initialization for arrays,
and no-initialization for padding:

instance Initable (Stored t) if NullInit t where

initialize = nullInit
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instance Initable (Array n a) if Initable a where

initialize = initArray (\ix -> initialize)

instance Initable (Pad n a) if NoInit a where

initialize = noInit

Default initializers for a structure type, using a null- or a no-initialization strat-
egy, for example, can be generated automatically by including an appropriate
deriving clause as part of the struct declaration for that type (see Section 3.6.9),
but it is also possible to specify a default initialization behavior for a structure
type using a handwritten instance of Initable.

5 Extended Example: Memory-based Arrays

This section describes an extended example of programming in Habit—an im-
plementation of a memory-based, maximum heap data structure of thread pri-
orities. From a functional programming perspective, this is an unusual choice
because it does not make heavy use of Habit’s conventional functional pro-
gramming features such as algebraic datatypes and higher-order functions. We
have chosen this example, however, to demonstrate how some of the other, less
familiar features of Habit might be used in a systems programming context. In
fact this particular example was originally implemented in C as part of pork,
a prototype implementation of an L4 microkernel, and the Habit implemen-
tation is written in a very similar style. For the purposes of comparison, we
include both the C and Habit versions of the code in the following text.

To provide more background, we begin with a summary of how this example
fits in to the implementation of pork (Section 5.1). We then describe the main
data structures that are used (Section 5.2), and the algorithms for inserting a
priority (Section 5.3), removing a priority (Section 5.4), and determining the
highest priority (Section 5.5) from the priority set. We end with some reflec-
tions and conclusions based on the example (Section 5.6).

5.1 Background

As an implementation of the L4 microkernel, pork includes code for managing
multiple address spaces and multiple threads of execution, including context
switching code to move between different threads and code for handling sys-
tem calls, machine exceptions, and hardware interrupts. In particular, pork

configures the machine hardware to generate periodic timer interrupts that
interrupt the execution of user level code. As each interrupt occurs, the ker-
nel updates an internal counter recording the amount of time that the current
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thread has been running and, if its timeslice has expired, determines which
thread should be executed next. In L4, scheduling decisions like this are made
on the basis of the priority values that are assigned to each thread.

The implementation of pork maintains a data structure, referred to in the source
code as the priority set, that stores the priorities of all runnable threads. The
priority set is implemented as a maximum heap data structure, which enables
the kernel to determine the priority of the highest runnable thread in constant
time. This, in turn, allows the scheduler to find the highest-priority runnable
thread in constant time by indexing into an array of runqueues, one for each
possible priority. On the downside, insertion and deletion into the priority set
are O(log(p)) operations, where p is the size of the set of all distinct priorities.
In practice, however, we expect that p is likely to be quite small (because many
threads have the same priority), and that insertion and deletion are relatively
uncommon, being necessary only when we add the first thread or remove the
last thread at a given priority. And even if there are many active threads, there
are only 256 possible priority levels in L4, so we know that p ≤ 256. Although
pork has yet to be heavily stress tested, these arguments support the choice
of a heap data structure and suggest that the O(log(p)) costs for insertion and
deletion will not usually be a problem in practice.

5.2 Data Structures

In this section, we turn our attention to concrete details of the implementation
of the priority set. In the C code, the underlying data structures are as follows:

#define PRIOBITS 8 // Priorities are 8 bit values

#define PRIORITIES (1<<PRIOBITS) // Total number of priorities (256)

// Max Heap: children of i are 2i+1, 2i+2; parent of i is (i-1)/2

static unsigned prioset[PRIORITIES]; // A heap of active priorities

static unsigned prioidx[PRIORITIES]; // Index priorities in prioset

static unsigned priosetSize = 0; // Number of entries in prioset

The prioset array stores the main heap structure with the relationship between
parent and children indices that is described in the comments. The priosetSize

variable records the number of distinct elements that are stored in the priority
set; we start with an empty set, and hence the initial value of priosetSize is
set to zero. The prioidx array records the index at which each priority value
occurs within prioset and is used to help in the implementation of the delete
operation. For example, if prio is a member of the current priority set, then
prioset[prioidx[prio]] will be equal to prio.

To illustrate how this works in practice, the diagram in Figure 4 shows a spe-
cific configuration that represents the set {3,4,5,8}. The left portion of this

79



8 4 5 3 . . .prioset

3 1 2 0 . . .prioidx

4priosetSize 8

4 5

3

Figure 4: Priority set data structures for {3,4,5,8}

diagram shows the concrete data structures, including the priosetSize vari-
able that records a total of four elements in the set, and the two arrays prioset

and prioidx. The arrows from prioidx to prioset show the mapping from in-
dividual priorities, p, to corresponding positions, i, in the main priority set
array. Many of the array elements have been left blank; their contents are not
important because they will not be used in any of the computations that are
performed using the priority set. The right portion of the diagram shows the
maximum heap structure that is encoded within the arrays, marking as-yet
unused portions of the tree with dotted lines. The maximum heap structure
is visible here with each element greater than the elements in its children, and
the maximum priority (in this case, 8) at the root of the tree (and hence at the
beginning of the prioset array).

In general, the code maintains the relationship between prioset and prioidx by
using a pair of lines like the following every time that it writes a value, prio, to
an index, i, of prioset:

prioset[i] = prio;

prioidx[prio] = i;

This pattern appears four times in the pork source code; it could have been
abstracted as a function (perhaps marked to be automatically inlined) or as a
macro, but either the possibility was not noticed, or else it was not considered
to be worth the trouble.

In Habit, we can define the priority set structures as memory areas using the
following declarations. For stylistic reasons, however, we rename PRIORITIES

as NumPrio and introduce a name, Priority, for the type of priority values:

type NumPrio = 256 -- Number of priority levels

type Priority = Ix NumPrio

area priosetSize <- 0 :: Ref (Stored Unsigned)

area prioset <- noInit :: Ref (Array NumPrio (Stored Priority))

area prioidx <- noInit :: Ref (Array NumPrio (Stored (Ix NumPrio)))
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The initializers here ensure that the priority set is initially empty. In this partic-
ular case, we could simply have relied on the default initializers, which would
have achieved exactly the same effect for priosetSize and performed redun-
dant but harmless null-initialization of the prioset and prioidx arrays. Once
again, however, for stylistic reasons, we prefer to make the initializers explicit.

Habit code to save a single value in the priority set looks very similar to the C
code shown above, except for the addition of more precise types (which, in this
case, could have been inferred from the body if we had not chosen to include
the type as documentation)8:

-- Update priority set to save priority value prio at index i

prioSet :: Ix NumPrio -> Priority -> M ()

prioSet i prio = do writeRef (prioset @ i) prio

writeRef (prioidx @ prio) i

With this definition, a call prioSet i prio updates the heap data structures to
indicate that priority prio is stored at index i in the heap. (Note that we use
the types Ix NumPrio and Priority to indicate the primary role for the two ar-
gument types. The fact that the types are synonyms of one another means that
we can use both as array indices.)

In moving from C to Habit, we have taken the opportunity to use more precise
types for the elements of the prioset and prioidx arrays. Why then are we still
using an unsigned integer for priosetSize? Given that there are 256 different
values of type Priority, and that we will allow each distinct priority to be in-
cluded in the priority set at most once, it follows that the value of priosetSize
can only take values between 0 and 256. As such, it might seem natural to treat
priosetSize as a value of type Ix (NumPrio+1). However, if we use a value of
this index type to record the size of the priority set then we will need to use
a corresponding checked increment or decrement operation each time that we
insert or remove a priority, which is awkward and redundant. Moreover, we
do not know how to reflect the intuitions that we have relied upon in the ar-
gument above within the the Habit type system. For example, it is not easy
see how we could arrange for an attempt to insert the same priority twice to
be treated as a type error. After experimenting with several implementation
choices here, our experience suggests that using a simple Unsigned value for
priosetSize is the most practical choice. The consequences of this decision will
be discussed again in the following text as we encounter uses of priosetSize.

8In this section, we write M for some fixed monad that can be chosen arbitrarily except for the
restriction that it must be an instance of the MemMonad class described in Section 4.14.
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5.3 Inserting a Priority

There is only one place in the pork source code where a value is inserted into
the priority set: this is at the point where we add an element to an empty run-
queue. For this reason, the C implementation uses the following code fragment
inline as part of the body of insertRunnable() instead of defining a separate
insertPriority() function:

// insert priority value "prio" into the priority set

heapRepairUp(prio, priosetSize++);

This code follows an increment of priosetSize with a call to an auxiliary func-
tion, heapRepairUp(), whose purpose is to restore the heap structure after a
value has been inserted. As the name suggests, heapRepairUp works by per-
colating a possibly misplaced value from the end of the heap towards the root
until it finds a position in which that value is greater than all of its children in
the tree. The C implementation of this function is as follows:

/*-------------------------------------------------------------------

* Insert "prio" into "prioset" given that (a) there is a gap at

* index "i"; and (b) the rest of the structure, excluding "i" is

* a valid heap.

*/

static void heapRepairUp(unsigned prio, unsigned i) {

while (i>0) {

unsigned parent = (i-1)>>1;

unsigned pprio = prioset[parent];

if (pprio<prio) {

prioset[i] = pprio;

prioidx[pprio] = i;

i = parent;

} else {

break;

}

}

prioset[i] = prio;

prioidx[prio] = i;

}

Following the same structure, we code these operations in Habit using a top-
level insertPriority function and an associated heapRepairUp worker function:

insertPriority :: Priority -> M ()

insertPriority prio = do s <- readRef priosetSize

writeRef priosetSize (s+1)

heapRepairUp (modIx s) prio
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heapRepairUp :: Ix NumPrio -> Priority -> M ()

heapRepairUp i prio

= case decIx i of

Nothing -> prioSet 0 prio -- at the root

Just j -> do let parent = j>>1

pprio <- readRef (prioset @ parent)

if pprio < prio then

prioSet i pprio

heapRepairUp parent prio

else

prioSet i prio

An implicit precondition for the insert operation in the original C code, which
we carry over directly to the Habit code, is that the priority value we are in-
serting is not already included in the priority set. Among other things, this
precondition should be enough to ensure that the value stored in priosetSize

will always be less than or equal to 256, and that the value of s in the body of
insertPriority will always be less than or equal to 255. These properties, how-
ever, are not captured in the type system, and so we have used the modIx func-
tion to provide an explicit guarantee that a valid Ix NumPrio will be passed in to
heapRepairUp. In this particular context, the call to modIx might be implemented
by a single bitwise and instruction. However, if we are sure that the precondi-
tion is always satisfied, then that instruction is redundant and it will have no
effect on the computation. To put it another way, the type of insertPriority

is not strong enough to ensure that the precondition is satisfied, so additional
steps (i.e., the call to modIx) must be taken to map the size of the set safely to a
corresponding index.

5.4 Removing a Priority

Like the code for inserting a priority, there is only one place in the pork source
code where it is necessary to remove a priority from the priority set: this is
the point at which we remove the last runnable thread from a given prior-
ity queue. As a result, the C code for removing a priority is inlined into the
removeRunnable() function that removes a runnable process from its runqueue.
Again, there is an implicit precondition that the specified prio is a member of
the priority set.

// remove priority value prio from the priority set

unsigned rprio = prioset[--priosetSize]; // remove last entry on heap

if (rprio!=prio) { // we wanted to remove a different element

unsigned i = prioidx[prio];

heapRepairDown(rprio, i);

heapRepairUp(prioset[i], i);
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}

// The following is needed only if we want an O(1) membership test

prioidx[prio] = PRIORITIES;

The general algorithm for removing an element from the priority set is to shrink
the heap by one element, reinserting the priority, rprio, that was previously
stored at the end of the heap array in place of the priority, prio, that we are
deleting. In the special case where these two priorities are the same, there
is nothing for us to do beyond decrementing priosetSize. More generally,
however, we must find the index of the priority that we are deleting (using
i = prioidx[prio]), reinsert the removed priority into the subtree of the heap
at that node (using heapRepairDown(rprio, i), and then blend that subtree into
the rest of the heap (using heapRepairUp(prioset[i], i)). The last line in the
C code above inserts a value into the prioidx array that is technically out of
range. As the comment indicates, this was intended to provide a mechanism
for determining, in constant time, whether any given priority value was in-
cluded in the priority set. In the end, however, we did not use this feature
elsewhere in the pork code, so we have chosen not to replicate it in the Habit
code below. In any case, if we wanted to reintroduce this kind of functionality
later on in the Habit code, it would probably be better to do so using a separate
array/bitmap of Booleans instead of extending the array to admit out of range
values. (Indeed, this would not even require any additional space: the Habit
version of prioidx requires only one byte for each possible priority, while the C
version requires at least 9 bits (and, in fact, currently takes 32 bits) per priority
in order to represent the PRIORITIES value.)

We have already seen the heapRepairUp() operation used in the code above,
but heapRepairDown() is a second auxiliary function that is needed only for the
remove operation. Its role is to move down the tree, comparing the value at
each node with the values at each of its children to ensure that the (maximum)
heap property is satisfied. The trickiest part of implementing this function is
to ensure that we only look at valid children as we descend the tree. This
requires checking that the index values we compute for the left (2i+1) and right
(2i+2) children of a given node i are not just valid indices for prioset, but also
that they are less than priosetSize. The C implementation below calculates a
candidate child index in the variable c and uses comparisons with priosetSize

to distinguish between heap nodes with 2, 1, or no children:

/*-------------------------------------------------------------------

* Insert "prio" into "prioset" by replacing the maximum element

* at "i". Assumes that the left and right children of "i" (if they

* exist) both satisfy the heap property.

*/

static void heapRepairDown(unsigned prio, unsigned i) {

for (;;) {// move bigger elements up until we find a place for prio

unsigned c = 2*i+1;
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if (c+1<priosetSize) { // two children

if (prio>prioset[c] && prio>prioset[c+1]) {

break;

} else if (prioset[c+1] > prioset[c]) {

c = c+1;

}

} else if (c<priosetSize) { // one child

if (prio>prioset[c]) {

break;

}

} else { // no children

break;

}

prioset[i] = prioset[c];

prioidx[prioset[c]] = i;

i = c;

}

prioset[i] = prio;

prioidx[prio] = i;

}

Turning to Habit, we can code the top-level remove operation as follows, fol-
lowing the same basic pattern as in the C implementation.

removePriority :: Priority -> M ()

removePriority prio = do s <- readRef priosetSize

writeRef priosetSize (s-1)

rprio <- readRef (prioset @ modIx (s-1))

if prio/=rprio then

i <- readRef (prioidx @ prio)

heapRepairDown i rprio (modIx (s-2))

nprio <- readRef (prioset @ i)

heapRepairUp i nprio

Unlike the C version, we have added a third parameter to the heapRepairDown

function that provides the index of the last remaining element in the priority
set. Among other things, this means that heapRepairDown can be written with-
out having to read the value of priosetSize on each iteration.

The code for removePriority includes two calls to modIx; both of which we
would, ideally, prefer to omit. The first is used to compute the index of the pri-
ority that had previously been stored in the last active slot of the heap. Given
the precondition, we can assume that this code will only be executed when the
set contains at least one element, so the index s-1 is always valid. By a similar
but slightly more complicated argument, the second call to modIx will only be
needed when the set contains at least two elements (the priority, prio, that is
being removed and the distinct priority, rprio, that will replace it), so the index
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s-2 used here is also valid. It is reasonable to assume that theorem proving
tools could be used to formalize these arguments and so justify removing the
modulo arithmetic (or bitwise and) operations that are suggested by the modIx

calls if the preconditions were guaranteed. If we are forced to rely only on the
type system, however, then these two conversions remain as minor concessions
to pragmatism in the Habit code.

Other than the addition of an extra argument, our Habit implementation of
heapRepairDown follows a similar structure to the C code except that, instead of
calculating a candidate child node c, we calculate index values l and r for left
and right children, respectively, where they exist, using the (<=?) operator.

heapRepairDown :: Ix NumPrio -> Priority -> Ix NumPrio -> M ()

heapRepairDown i prio last

= let u = unsigned i in

case (2*u+1) <=? last of -- Look for a left child

Nothing -> prioSet i prio -- i has no children

Just l -> -- i has a left child

do lprio <- readRef (prioset @ l)

case (2*u+2) <=? last of -- Look for a right child

Nothing -> -- i has no right child

if lprio > prio then

prioSet i lprio

prioSet l prio

else

prioSet i prio

Just r -> -- i has two children

rprio <- readRef (prioset @ r)

if prio > lprio && prio > rprio then

prioSet i prio

else if (lprio > rprio) then

prioSet i lprio -- left is higher

heapRepairDown l prio last

else -- right is higher

prioSet i rprio

heapRepairDown r prio last

This example nicely illustrates the flexibility that we have to navigate an array
in a non-linear manner using the (<=?) operator. Note that we can safely avoid
any array bounds checks when we read the priorities lprio and rprio of the
left and right children, respectively, because of the way in which we obtained
the corresponding indices l and r.

5.5 Finding the Highest Priority

The effort that we invest in building and maintaining the priority set data struc-
tures pays off when we want to find the highest priority value for which there
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are runnable threads. This feature is used in the pork scheduler to allow selec-
tion of the next runnable thread in constant time in the reschedule() function
shown below:

/*-------------------------------------------------------------------

* Select a new thread to execute. We pick the next runnable thread

* with the highest priority.

*/

void reschedule() {

switchTo(holder = priosetSize ? runqueue[prioset[0]] : idleTCB);

}

This code examines the value of priosetSize to decide if there are any runnable
threads in the system, and then switches context, either to the next runnable
thread at the highest priority, or else to the idle thread if the priority set is
empty. (Note that the idle thread is only scheduled when there are no other
runnable threads at any priority level so that it does not take time from any
other thread. In effect, the idle thread runs at a reserved priority level below
the lowest value that is permitted for any other thread.)

In the interests of providing a standalone priority set abstraction that is inde-
pendent of details of context switching (switchTo), runqueues, or the current
time slice holder, we will provide a Habit function to return either Nothing if
the priority set is empty, or else Just prio where prio is the highest priority of
a runnable thread. The code is straightforward:

highestPriority :: M (Maybe Priority)

highestPriority = do s <- readRef priosetSize

if s==0 then

return Nothing

else

prio <- readRef (prioset @ 0)

return (Just prio)

Note that in this case we do not need a modIx operation because, so long as the
set is non-empty, we can be sure that the 0 index is valid.

Using highestPriority, the original code for reschedule might be translated
into code like the following:

reschedule :: M a

reschedule = pickThread >>= switchHolderTo

pickThread :: M (Ref TCB)

pickThread = case<- highestPriority of

Nothing -> return idleTCB
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Just p -> readRef (runqueue @ prio)

switchHolderTo :: Ref TCB -> M a

switchHolderTo tcb = do writeRef holder tcb

switchTo tcb

While it is appealing to separate out the highestPriority operation like this,
it could lead to some unnecessary work. In the code above, highestPriority
is used to construct a result of type Maybe Priority, based on an internal test
of the value of priosetSize, but then that value is subjected to pattern match-
ing and immediately discarded by the code in pickThread. If we assume that
the Maybe values involved here will be represented as unboxed values without
the need for dynamic memory allocation, then the only real problem here is
the overhead of an unnecessary test. This is probably not too significant from
a performance perspective, but it was avoided completely in the original C
program because of the way that two operations were fused together (a trans-
lation carried out by hand and blurring the abstraction boundary around the
priority set implementation in the process). Fortunately, However, if the com-
piler performs some reasonable (whole-program) inlining and optimization,
then it should be possible to obtain the same effect automatically, translating
reschedule into the following code that avoids the use of intermediate Maybe

values, just like the original C version:

reschedule = do s <- readRef priosetSize

tcb <- if s==0 then

return idleTCB

else

prio <- readRef (prioset @ 0)

readRef (runqueue @ prio)

switchHolderTo tcb

There is, in fact, one other use of the priority set in pork, which appears at the
end of the timer interrupt handler. By the time the kernel reaches this point
in the code, it has acknowledged and re-enabled the timer interrupt, updated
the system clock, performed basic timeslice accounting, and is preparing to re-
turn to the current timeslice holder having determined that its timeslice has not
yet expired. (Timeslice periods can be set on a per thread basis in L4 and will
typically span multiple clock ticks/timer interrupts.) A final step is needed to
determine whether some higher-priority thread has become runnable since the
last timer interrupt; this could occur, for example, as the result of an interven-
ing hardware interrupt or system call. If a higher-priority thread has become
runnable, then we switch to that instead of returning to the current timeslice
holder. (The preempted holder remains at the front of the runqueue for its
lower level priority so that it will still get the rest of its timeslice once the work
of higher-priority threads has been done.)
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ENTRY timerInterrupt() {

...

// Here if infinite timeslice or current timeslice has not finished

if (priosetSize && prioset[0] > holder->prio) {

reschedule(); // preempt by higher priority thread?

}

resume();

}

This code can also be translated into Habit using highestPriority:

timerInterrupt

= do ...

...

case<- highestPriority of

Just prio -> hprio <- readRef (holder.prio)

if prio > hprio then

reschedule

resume

Considering the implementations for reschedule given above, we can see that
a naive compilation of the code at the end of timerInterrupt will involve two
tests of priosetSize along the path to preempting the current timeslice holder.
Unless we somehow expect the value of priosetSize to change as a result of
some external behavior/concurrency in the system, a possibility that can be
captured explicitly in C by marking the variable as volatile, the second test of
priosetSize is redundant. In the C version, absent a volatile annotation, we
can expect that a reasonable optimizing compiler will automatically produce
code that omits the second test. A clarification of the semantics of memory
areas will be required to determine whether the same result could be obtained
in Habit. Alternatively, if this proved to be a real problem in practice, then it
might just be better to rewrite the code by hand to eliminate the redundancy:

case<- highestPriority of

Just prio -> hprio <- readRef (holder.prio)

if prio > hprio then

readRef (runqueue @ hprio) >>= switchHolderTo

resume

Although examples like these will probably not be significant sources of prob-
lems in practical programs, they do suggest some possible goals for the design
of an optimizing Habit compiler.
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5.6 Conclusions

In this section, we have described a non-trivial example of Habit programming
that uses memory-based arrays to re-implement a portion of the timer interrupt
handler in pork. Among other features, this example shows how Habit types
can be used to ensure safety for array access operations that are implemented
without array bounds checking.

As far as code size or clarity is concerned, there is little to distinguish between
the Habit version of the program and the original that was written in C. Given
that the former was specifically written to follow the structure of the latter, this
is probably not too surprising.

In terms of performance, it also seems reasonable to expect that a compiler for
Habit could reasonably be expected to generate code of the same quality that
we can obtain via C, at least if we assume the use of unboxed/unpointed types
for unsigned, index, and reference values. In particular, provided that the com-
pilation of monadic expressions and related primitives is handled in an appro-
priate manner, there is no need for heap allocation of either data structures or
function closures. In addition, the only recursive calls in the Habit code are
tail calls, which could be compiled directly into simple loops. The only places
where it seems likely that we would not be able to obtain essentially the same
machine code as we might get for the C version is in the three calls to modIx, one
in insertPriority and two in removePriority. Apart from the (probably negli-
gible) overhead of additional modulo arithmetic or bitwise and instructions,
these are also, subjectively, the ugliest and most difficult to justify sections of
the code. In their defense, the purpose of those calls is to establish invariants
that are already implied by preconditions of the functions in whose definitions
they appear. The real villain of the piece, perhaps, is our inability to express
and enforce those preconditions from within the type system.

One advantage of the Habit code over the C version is that the former uses only
safe operations. While this does not remove the need for verification of algo-
rithmic properties, it does mean that we can be sure of memory safety for all
of the Habit code. By comparison, the C version uses unchecked array index-
ing operations and would require careful and detailed analysis of every line of
code just to establish memory safety. It seems very likely, for example, that this
would require us to establish a global invariant on the value of priosetSize. In
addition, we would probably need to make an even broader assumption that
no other part of the complete program, beyond the fragments of C shown here,
could somehow use buggy address arithmetic to modify, either inadvertently
or maliciously, the contents of any of the prioset, prioidx, or priosetSize global
variables.

One possible criticism of the Habit code in this section is that it is written in
a very C-like style, without leveraging many of the higher-level tools of func-
tional programming. In principle, we might expect that properties relating to
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algorithmic or functional correctness would be more easily established for an
implementation written in a more functional style. It would certainly be pos-
sible to write versions of the code that we have shown here in the higher-level
style, for example using algebraic datatypes, higher-order functions, and per-
haps even lazy evaluation. It is much harder to determine, however, what we
would necessarily have to sacrifice in terms of performance and predictabil-
ity in such an implementation. And, finally, although the functional code in
this example may seem fairly low-level and imperative, the fact that it is writ-
ten in Habit should mean that it can be called fairly easily from other, higher-
level Habit code without having to resort to (sometimes fragile) inter-language
working.
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